Welcome to Veg Edge Weekly!

The Cornell Vegetable Program is pleased to roll out the first ever edition of Veg Edge Weekly. This year, all enrollees in our program will receive the Veg Edge Weekly (no need to subscribe to a separate PestMinder as in the past). We hope you find the new name and new look to the newsletter favorable. Our team of specialists is connected with experts nationwide to bring you the latest information available to help you stay on the cutting edge of vegetable production. Please feel free to share your comments on the newsletter or our program in general with any of the staff listed on the back page. We will be sending out a reader survey at the end of the season to more formally get your input.

Your newsletter team includes:

John Gibbons – weather and pest tables
Robert Hadad – fresh market sweet corn, vine crops, other fresh market crops such as asparagus and leafy greens, organic
Christy Hoepting – cabbage, onions
Julie Kikkert – beets, carrots, peas, snap beans, sweet corn with an emphasis on processing
Carol MacNeil – dry beans, potatoes, soil health
Judson Reid – greenhouse vegetables, tomatoes, peppers, eggplant
Angela Parr – layout and e-mail distribution
Vivian Flynn – printing and mailing

We look forward to serving you this year!

Sincerely,

Julie Kikkert
Program Team Coordinator
Weather Charts

Weekly Weather Summary: 4/27 - 5/2**

<table>
<thead>
<tr>
<th>Location</th>
<th>Rainfall (inch)</th>
<th>Temp (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Week</td>
<td>Month</td>
</tr>
<tr>
<td>Albion</td>
<td>1.02</td>
<td>0.27</td>
</tr>
<tr>
<td>Appleton, South</td>
<td>****</td>
<td>0.37</td>
</tr>
<tr>
<td>Buffalo*</td>
<td>0.59</td>
<td>0.27</td>
</tr>
<tr>
<td>Farmington</td>
<td>0.80</td>
<td>0.12</td>
</tr>
<tr>
<td>Geneva</td>
<td>****</td>
<td>****</td>
</tr>
<tr>
<td>Himrod</td>
<td>1.39</td>
<td>0</td>
</tr>
<tr>
<td>Knowlesville</td>
<td>0.80</td>
<td>0.29</td>
</tr>
<tr>
<td>Lafayette</td>
<td>1.74</td>
<td>0.09</td>
</tr>
<tr>
<td>Lodi</td>
<td>1.24</td>
<td>0.10</td>
</tr>
<tr>
<td>Lyndonville</td>
<td>****</td>
<td>0.35</td>
</tr>
<tr>
<td>Ransomville</td>
<td>0.66</td>
<td>0.24</td>
</tr>
<tr>
<td>Rochester*</td>
<td>0.86</td>
<td>0.10</td>
</tr>
<tr>
<td>Syracuse*</td>
<td>2.99</td>
<td>0.04</td>
</tr>
<tr>
<td>Williamson</td>
<td>0.68</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Accumulated Growing Degree Days (AGDD)
Base 50°F: May 2, 2011**

<table>
<thead>
<tr>
<th>Location</th>
<th>2011</th>
<th>2010</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albion</td>
<td>69</td>
<td>150</td>
<td>85</td>
</tr>
<tr>
<td>Appleton, South</td>
<td>60</td>
<td>110</td>
<td>66</td>
</tr>
<tr>
<td>Buffalo</td>
<td>76</td>
<td>138</td>
<td>79</td>
</tr>
<tr>
<td>Farmington</td>
<td>75</td>
<td>165</td>
<td>79</td>
</tr>
<tr>
<td>Geneva</td>
<td>82</td>
<td>186</td>
<td>99</td>
</tr>
<tr>
<td>Himrod</td>
<td>79</td>
<td>149</td>
<td>104</td>
</tr>
<tr>
<td>Knowlesville</td>
<td>43</td>
<td>172</td>
<td>93</td>
</tr>
<tr>
<td>Lafayette</td>
<td>97</td>
<td>147</td>
<td>110</td>
</tr>
<tr>
<td>Lodi</td>
<td>93</td>
<td>177</td>
<td>***</td>
</tr>
<tr>
<td>Lyndonville</td>
<td>69</td>
<td>142</td>
<td>77</td>
</tr>
<tr>
<td>Ransomville</td>
<td>60</td>
<td>155</td>
<td>78</td>
</tr>
<tr>
<td>Rochester</td>
<td>84</td>
<td>176</td>
<td>79</td>
</tr>
<tr>
<td>Syracuse</td>
<td>110</td>
<td>159</td>
<td>112</td>
</tr>
<tr>
<td>Williamson</td>
<td>74</td>
<td>181</td>
<td>77</td>
</tr>
</tbody>
</table>

*Airport stations

** Data from other station/airport sites is at: http://newa.cornell.edu/ Weather Data, Daily Summary and Degree Days. ■ (J. Gibbons)

NEWA is Still Operating & Improving!

Julie Carroll and Abby Seaman, NYS IPM Program

Although all funding for NEWA (Northeast Network for Weather Applications – on-line link to on-farm weather stations, pest forecasts, weather info) was eliminated from the NYS IPM Program budget as of July 1, 2010, NEWA is still alive and growing! Funding reductions have resulted in some changes:

Five stations have been pulled - Barrington, Batavia, Eden, Groveland and Savannah.

Phone lines transferred - Phone lines previously supported by NYS IPM are now being paid by farms, researchers, and processors at the following locations and we thank them! Branchport, Elba, Freeville, Gainesville, Himrod, Knowlesville, Potter, Prattsburg, Pulteney, Scriba, Valois, Watkins Glen, Williamson (Motts). If one of these locations is important for your operation consider purchasing a replacement Rainwise instrument to maintain data flow. Look for special price incentives coming from Rainwise!

Limited personnel support - Juliet Carroll, NEWA Project Leader, now is half-time at NYS IPM. We also lost one 30% position. NEWA now self-funds a second part-time position to assist with weather station hardware and software, data transmission problems, and data quality control.

NEWA will continue to operate, although NEWA may change. Station outages may be more frequent and longer due to lack of personnel.

Essential website maintenance and upgrades - The NEWA website at newa.cornell.edu will continue to deliver forecast models and weather data applications.

We will need to implement pay-for-service systems to generate funding - Your input on this is appreciated. Send and ideas and questions to newa@cornell.edu. We greatly appreciate the many positive statements we receive regarding NEWA’s impact and importance to IPM practice. Those of us working to build NEWA’s future welcome any and all of your ideas. ■
Asparagus: Weed Control Strategies

Asparagus weed control should start the season before by using the right products for the right purpose. Using cover crops and the timely cultivation techniques can also reduce the use of herbicides (see the cultivation machinery article at http://www.vegetables.cornell.edu/weeds/newcultivationmech.pdf).

It is critical that all labels be read carefully. Rates vary with weather conditions, size of weeds, etc. Follow all recommendations on the label.

For pre-spear emergence:
- Dual Magnum - annual grasses, yellow nutseed, hairy galinsoga, suppression of other broadleaf weeds
- Gramoxone Inteon - Allow maximum weed emergence before treating. Add an adjuvant like X-77 or Charger E. Do not make more than 2 applications per season.
- Clarity 2.5 EC (pre and post spear emergence)- sowthistle, mustard spp., redroot pigweed, Russian thistle, common chickweed, field bindweed.
- Devrinol 5 DF (pre and post spear emergence)- annual grasses and broadleaves.
- Fusilade DX (pre and post) - most annual and some perennial grasses
- Lorox 50DF (pre and post)
- Sandea (pre and post) - Preemergence applications: galinsoga, lambquarters, mustard/radish species, redroot pigweed, ragweed, velvetleaf. Yellow nutseed is suppressed but not controlled. Postemergence applications: yellow nutseed, galinsoga, redroot pigweed, mustard/radish species, ragweed, velvetleaf
- Callisto (pre spear and post harvest) - annual broadleaf weeds
- Chateau WDG (pre spear and post harvest - annual broadleaf weeds
- Formula 40 (pre spear and post harvest) - perennial broadleaves
- Karmex DF (pre spear and post harvest) - annual broadleaves and grasses
- Sencor 4F (pre spear and post harvest) - broadleaves (at low rate);
- Sencor DF (pre spear and post harvest) - broadleaves (at low rate);
- Roundup Weather Max (pre spear and post harvest) - quackgrass and perennial broadleaves
- Poast (post spear emergence) - annual grasses
- Treflan HFP (pre and post harvest) - For use on established beds. Apply with shallow incorporation. Adjust the rate according to label recommendations for soil type. Split applications can be made with half preemergence followed by half postemergence after last harvest. May aid in prevention
- Aim EW (post harvest) - selected broadleaves

For more information, refer to the Cornell Vegetable Guidelines.

Weed control for organic production:
Weed control is the most serious challenge facing organic asparagus producers. Since asparagus is a perennial crop that increases in bed-width each year, cultivation for weeds “in the row” during spear harvest, and following harvest during fern production, is not possible. Thus, elimination of perennial weeds such as bermudagrass, quackgrass, johnsongrass, and nutgrass prior to planting is especially critical. Annual weeds can be controlled through a combination of cultural, mechanical, and biological control techniques.

Cultivation - To control winter annual weeds that have emerged in the field, cultivate at a shallow depth after the winter ferns (i.e., trash ferns from previous season) have been mowed or burned off. Avoid damage to crowns by straddling the beds. At no time should tractor tires be driven on or across the rows. Following harvest the field should be disked or tilled again to eliminate weeds that have emerged since the last cultivation and to prepare the field for summer fern production.

Cultivation between the rows with a high-clearance tractor and 3-point hitch-mounted row cultivators will control the bulk of inter-row weeds during the growing season. During harvest of spears and during fern production, in-row cultivation opportunities are limited. Yet, these in-row weeds pose the greatest threat because weed competition with ferns interferes with crown storage and reduces yield the following growing season.

Mulches and Weeder Geese - On large-scale operations, mulching can be mechanized using straw spreaders or forage wagons carrying green chop or shredded dry mulch. Weeder geese are an alternative to mulching, and have a history of use in asparagus.

Flame Weeding - Flame weeding, which is done with propane flamers, is another possibility for in-row weed control. Hand-held or backpack flamers can be especially useful for spot treatment, though tractor-drawn rigs are available. As a general rule, flame weeding is most effective against annual broadleaf weeds, moderately effective against annual grasses, and a poor option for perennial weed management. Flaming should be considered a potentially useful though experimental tool. ATTRA has additional information on the uses of flame weeding in vegetables, available on request.

Cover Crops - Cover crops are another useful tool in asparagus weed management. Two cover crop systems that have potential in asparagus are “dying mulches” and “living mulches.”

Dying Mulches - A dying mulch is a cover crop planted out of season. While growing it suppresses weeds; then it dies back out on its own without requiring the use of herbicides, mowing, or tillage. Winter rye—planted in the spring—has been used successfully in this manner in several agronomic and horticultural crops.

In asparagus here’s how this might work. Following post-harvest tillage of the asparagus field, the field is overseeded with winter rye at 120 lbs. per
Dr. Newenhouse tried the non-perennial rye system described above. She agreed that timing was critical with respect to a cool spell. As a result of a cold snap one year, her rye headed out and created additional management problems. Biological farming strategies, like conventional farming strategies, don’t always work as expected.

Living Mulches - Living mulches are cover crops grown in association with annual or perennial crops, primarily for weed suppression and as a soil management practice. The goal is to plant a low-growing cover that suppresses weeds without competing too much with the main crop. In Wisconsin, Dr. Newenhouse’s living-mulch work in asparagus focused on two cover crops: perennial ryegrass and ‘Dwarf White’ Dutch white clover. Both cover crops were fall-established and managed the following growing season with one to three mowings using a walk-behind sickle-bar mower. Preliminary results indicated that perennial ryegrass performed better than the Dutch white clover the first growing season. However, in the second growing season these results were reversed, with the Dutch white clover performing better. This research found that living mulches could be highly effective in weed suppression but also quite competitive with the crop, reducing asparagus growth 50–75% in some instances. Clearly, more research is required to find living mulch systems that are more viable.

Harvest - Asparagus can be harvested the second year after planting. A traditional harvest sequence calls for cutting 2 weeks the first year, 4 weeks the second, and 6-8 weeks thereafter. When spears are predominantly small in diameter, harvest should be stopped. (R. Hadad)

Cole Crops: Scout Greenhouse Plug Transplants for Diseases

Greenhouse grown cole crop transplant seedlings should be scouted for **black rot (BR)**, **Alternaria leaf spot (ALS)**, **downy mildew (DM)**, **wirestem** and **damping off**. It can be tricky to distinguish which disease is present based on symptoms alone, but it is important to know, because these different diseases are managed differently. In general, look for yellowing, tiny black spots on the leaves and stunting. Anyone with symptomatic seedlings is encouraged to contact one of the Cornell Vegetable team members for confirmation via Cornell Plant Pathologist, Chris Smart.

Black rot - Typical symptoms of plants with a systemic infection (e.g. originating from seed) of BR include yellowing leaves and black veins. The discolored veins help distinguish yellowing due to BR from that caused by nutritional deficiency or water stress. Lesions caused by secondary plant to plant spread are necrotic and V-shaped. Infected seedlings often show no symptoms at all. Secondary spread can occur rapidly during transplant production, because the close proximity of plants in these high density plantings make it easy for bacteria to spread in a water droplet from an infected plant to a clean plant. To manage BR, it is most important to reduce spread of BR during transplant production. 1) Use new supplies and trays. Disinfect greenhouses, old trays, and equipment used in transplant production with a germicidal agent such as quaternary ammonium chloride salts (Q-salts such as Greenshield or Physan 20), or hydrogen dioxide (ZeroTol). 2) Handle transplants only when the foliage is dry. 3) If BR is detected, consider all plants in that flat to be contaminated and remove and destroy immediately. Surface disinfect the area including benches, tools, and everything that came in contact with the diseased plants. Either destroy or isolate the flats surrounding those infected and monitor plants closely for disease symptoms. Do not attempt to separate healthy from diseased plants within a flat. 4) Use copper bactericides regularly once BR has been detected in a greenhouse. Since BR is so tricky to identify early, preventative use of copper bactericides may also be warranted.

Downy mildew - Young seedlings are more likely to die from DM than when larger plants are infected. Yellow angular spots appear on the upper sides of leaves. Under moist conditions, grayish mycelium and spores can be found on the corresponding undersides of the leaves. To manage DM, avoid excessive overhead irrigation to keep leaves dry. If you find DM in cole crop transplants, fertilizer can be used to stimulate growth to enable seedlings to outgrow infections. There are no fungicides labeled for use in the greenhouse, but plants that are outside hardening off can be treated with Ridomil Gold, Bravo or any of the several fungicides labeled. Once transplanted into the field, DM-infected transplants should be sprayed with Bravo weekly until no more symptoms are evident. If the weather is hot and dry, DM-infected transplants should grow out of the disease just fine.

Alternaria leaf spot (ALS) - Occasionally, ALS occurs on transplants. It ap-
Onions: When is it Too Late to Plant?

In a “normal” year, at least 80% of the onion acreage is in the ground by the 1st week of May. April 2011 was the wettest and 3rd cloudiest in Rochester’s 141 years of recorded history – ‘nuff said!

When is it too late to plant onions?
Onions are a long-season crop requiring 75 to 125 days to reach maturity. It is a general rule of thumb to have planting of direct seeded onions completed by May 10th. Although it is possible to produce a decent crop when onions are direct seeded later than that, it is with increased risk for the following reasons:

- Maturity is pushed later into September when cooler and often wetter conditions (due to remnants of hurricanes) are less favorable for drying down onions after pulling and successful harvest.
- Cooler fall temperatures are not favorable for bulbing; rather, plants revert back to vegetative growth, and do not mature and lodge properly, which leads to poor quality bulbs with thick necks and double centers that do not store well.
- Onions planted past May 10th would be at the flag leaf stage by the end of May or early June when the risk of temperatures in the 80s and 90s would be much greater than in the beginning of May when April-seeded onions would be at the flag leaf stage. The flag leaf stage is particularly vulnerable to being burned up from the hot sun and muck.
- Bulb size would be down. In onions, large healthy top growth is directly related to large bulb size. The longest day of the year triggers bulbing in onions. Onions that are seeded after May 10th, have only 5 weeks of vegetative growth before the plants go into bulbing mode, compared to onions seeded in mid-April that have 9 weeks. Assuming that onions grow an average of 1 leaf per week, delayed planting can result in significant yield losses. In a Cornell onion yield survey, onions planted on April 30th yielded 150 cwt per acre more than onions grown on May 10th.

If onions are to be direct seeded later than May 10th, it is recommended that varieties of 100 days or less be used. There have been several reported successful onion crops that were direct seeded later than May 10th, obviously, it is at a higher risk and ultimate success will greatly depend on the weather during the rest of the growing season.

Transplanted onions, having 3-4 leaves when they are planted, can probably be transplanted up until around the end of June. The logic being that a direct seeded crop planted on May 10th would be about at the 4-leaf stage by the end of June. Of course, the yield would be reduced significantly compared to transplants going into the ground in April. ■ (C. Hoepting)
Peas: Early Season Weed Control

Ideally, weed control in peas and other vegetables should start several years before planting the crop. You’ll get the best results by using good crop rotation, cover crops and other practices that suppress weeds. This is especially true for weeds that are problematic in peas such as corn chamomile (“daisy”), nightshades, and Canada thistle. Ideally, fall applications of herbicides would have been applied to control any daisy or thistle problems for the coming year. A comprehensive article on nightshade management can be found in the April 2011 issue of Veg Edge or on the CVP website (http://cvp.cce.cornell.edu). I don’t expect nightshades to be as much of a problem in peas this year due to the cool spring.

For peas that haven’t yet been planted, there are pre-plant incorporated (PPI) or pre-emergence (PreE) herbicides that can be used (see the CVP website listed above for a chart of relative effectiveness of herbicides for peas).

- Pursuit can be used PPI or PreE. Its strengths are redroot pigweed, mustards and nightshades. When used PPI, it also has good activity against common lambsquarters.
- Treflan HFP and Prowl 3.3EC or H₂O are applied PPI and have good annual grass activity. In addition, Prowl is effective against lambsquarters, purslane, pigweed and velvetleaf.
- Command 3ME (PreE) has good activity against annual grasses and some broadleaves (esp. Velvetleaf). Be aware that peas will turn white in areas where the herbicide is overlapped. The peas will grow out of this and usually not be harmed.
- Dual Magnum – apply only pre-emergence after planting and do not incorporate. If soils are wet and cold during emergence, Dual Magnum may delay maturity and/or reduce yields. Dual provides excellent control of annual grasses and yellow nutsedge. It is also good on several broadleaves including lambsquarters, purslane, pigweed, gallinsoga, and eastern black nightshade. Dual is an excellent choice if you have the right soil moisture conditions.

Fresh market growers may find cultivation with a flex-tine weeder or harrow a useful way to manage weeds in peas. Cultivation isn’t used much by processing growers because they want a uniform field surface for harvesting.

PPI and PreE herbicides won’t provide complete control of weeds alone. You’ll need to be scouting and managing weeds well into the season. Look for a follow-up article in Veg Edge Weekly within the coming weeks on how to manage those pesky weeds once your peas are growing. (J. Kikkert)

Potatoes/Tomatoes: Late Blight Detected

A very low level of late blight (LB) has been detected in potato seed from multiple sources in WA, WI and MI. Extensive sampling and testing is occurring there to determine the extent and severity of the disease but results have shown only very weak infection to date. Researchers have not been able to culture the disease. LB has also been detected on tomato and potato plants in a CT greenhouse. From Sharon Douglas, The Connecticut Agricultural Experiment Station: “Mother’s Finest” tomatoes were grown from seed collected locally last year. Foliar and stem lesions were observed 4/22.

“Australian Crescent” potatoes were grown from organic seed purchased from a commercial supplier out-of-state and showed stem lesions around the same time. Potato tubers had shown no obvious symptoms. Other tomatoes and potatoes in the greenhouse don’t show symptoms yet.

From Meg McGrath, Cornell, 4/28, Long Island Fruit & Vegetable Update: Infected potato seed is likely the source of the pathogen for this CT outbreak of LB. It can be difficult to detect infected potato seed. There may be very limited symptoms, especially with the new strains (genotypes) like US-22 that are more aggressive on tomato than potato and are less aggressive in tubers than US-8, which had been the main strain occurring in potato. There is thought to be a higher risk for potato seed infected with a tomato strain of LB developing foliar symptoms because sprouts are less likely to be killed than with a more aggressive potato strain. Last year LB also developed around this time on tomatoes in greenhouses and high tunnels in a few locations in the region. Nearby plantings of potato were suspected as being the source of the pathogen for these outbreaks. Source plants were not found, however. This ‘obligate’ pathogen is thought to only be able to survive over winter in potato tubers in areas where there are not living tomatoes or potatoes throughout the winter (e.g. southern FL).

Aggressively pick out rotted or suspected potato seed tubers and treat seed with a mancozeb-containing seed treater, or Evolve. Disinfect cutting knives frequently, keeping seed lots separate. Tomato plants as well as potatoes should be inspected for symptoms of LB routinely and thoroughly throughout this season beginning now. If suspect plants are found, immediately contact a member of the CCE, Cornell Vegetable Program and promptly submit fresh samples of symptomatic green tissue enclosed in a blown up plastic bag. (edited by C. MacNeil)
Greenhouses: Techniques to Manage Pot-Bound Transplants

It’s been too wet and cold to transplant many crops. As wet weather prolongs the time transplants are in the greenhouse there are several risks to manage. All transplants can become pot-bound and/or leggy (elongated hypocotl) when kept indoors too long. Once a transplant has reached the desired size and cannot be moved out due to weather, there are a few management options.

1. Decrease water and nitrogen.
2. Decrease temperature in the greenhouse.
3. Move plants into a cold frame or harden-off on wagons, etc. outside
4. Pot-up into larger containers. ■ (J. Reid)

Greenhouse/High Tunnels: Lessons Learned this Spring

The cold, wet spring has given greenhouses and high tunnels a chance to really get a jump on field plantings this year. However, the cloudy weather has brought on a rash of problems. Due to slow plant growth we have found that normal fertilizer rates have led to marginal necrosis on some tomato plantings. In one situation a ‘handful’ of nitrogen fertilizer was placed into each transplant hole. Hundreds of plants died within hours due to chemical overload.

Another lesson we are learning this spring is the critical importance of proper site preparation. Tunnels that are susceptible to surface water runoff have standing water in outside rows. As the planting season inside the tunnel is delayed any advantage over field production is decreased, and the net economic performance of the tunnel could easily be less than that of field production. Soil-based greenhouses should have excellent drainage on all 4 sides to ensure early season soil conditions are fit for planting. ■ (J. Reid)

Dates to Remember...

May 13 - Horticulture & Organic Agriculture Titles in the 2012 Farm Bill. 10:00 am to noon, Bistro of the Arts & Home Building, NYS Fairgrounds, Syracuse. NYS Ag & Markets is holding a series of meetings for stakeholders to prioritize NYS concerns regarding the reauthorization of the Farm Bill. Pre-registration required by May 11. Call 518-457-8876.
Veg Edge Weekly is a seasonal weekly publication of the Cornell Vegetable Program providing information about crop development, pest activity and management, pesticide updates, local weather conditions, meetings and resources.

Veg Edge is published 28 times annually, monthly from October-May and weekly from May-September. If you have any questions about this publication, contact Julie Kikkert at 585-394-3977 x404 or jrk2@cornell.edu.

Visit the Cornell Vegetable Program at http://cvp.cce.cornell.edu/.

Cornell Vegetable Program Extension Specialists

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert Hadad</td>
<td>585-739-4065 Cell</td>
<td>rgh26@cornell.edu</td>
</tr>
<tr>
<td>Christy Hoepting</td>
<td>585-721-6953 Cell</td>
<td>cah59@cornell.edu</td>
</tr>
<tr>
<td>Julie Kikkert</td>
<td>585-313-8160 Cell</td>
<td>jrk2@cornell.edu</td>
</tr>
<tr>
<td>Carol MacNeil</td>
<td>585-313-8796 Cell</td>
<td>crm6@cornell.edu</td>
</tr>
<tr>
<td>Judson Reid</td>
<td>585-313-8912 Cell</td>
<td>jre11@cornell.edu</td>
</tr>
</tbody>
</table>

CVP Assistants

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Gibbons</td>
<td>716-474-5238 Cell</td>
</tr>
<tr>
<td>Katie Klotzbach</td>
<td>585-313-8796 Cell</td>
</tr>
</tbody>
</table>

This publication contains pesticide recommendations. Changes in pesticide regulations occur constantly and human errors are possible. Some materials may no longer be available and some uses may no longer be legal. All pesticides distributed, sold or applied in New York State must be registered with the New York State Department of Environmental Conservation (DEC). Questions concerning the legality and/or registration status for pesticide usage in New York State should be directed to the appropriate Cornell Cooperative Extension specialist or your regional DEC office.

Cornell Cooperative Extension and its employees assume no liability for the effectiveness or results of any chemicals for pesticide usage. No endorsement of products or companies is made or implied. READ THE LABEL BEFORE APPLYING ANY PESTICIDE.

Yates County
Cornell Cooperative Extension
417 Liberty Street
Penn Yan, NY 14527