This week we are starting our regular distribution of the Weekly Update. From now until October you can expect to receive a copy of the newsletter every Thursday morning if you are an email subscriber and every Friday or Saturday if you receive the Update by mail. As always, we will include timely tips, weather information, and meeting notices. New this year, all enrolled members are able to post items that are interested in selling or buying in our classifieds section, located on the back of the last page. See that page for more information.

We look forward to working with you through a productive growing season. Please feel free to contact us at the phone numbers or emails to the left any time.

-Chuck, Crystal and Laura

Potato Update

Now that most of the potato seed has been delivered and some even planted, it’s time to talk about a few things in regards to Late Blight management. As warm and dry as it seems, Late Blight is probably the last thing on your mind, but it should be something you’re managing now! Last year two strains of Late Blight were found in Maine; US 23 and US 24. Although we did not find any late blight on potatoes in the area last year, many of our growers have or are purchasing their seed from Maine suppliers, especially this year with NY potato seed in short supply. Knowing they had Late Blight last year means there is the potential for some seed being brought in from Maine that could be infected with Late Blight.

Your first line of defense will be to observe your cutting process closely and remove any potatoes that do not look healthy (not just late blight but all diseases including scab, silver scurf etc.). If you suspect late blight, please contact one of your CDVSFP educators and we will take a sample for testing.

If you suspect that your seed potatoes have Late Blight, please contact one of your CDVSFP educators and we will take a sample for testing.

We know that Late Blight can overwinter in both cull potato piles and in volunteers left in the fields. If you have cull piles anywhere on your farm, try to bury them as soon as possible. If you can’t bury them, keep them burned down with a non-selective herbicide like glyphosate. Unfortunately, due to last year’s wet conditions, a lot of potatoes were not harvested and left in the field. If you were lucky, you were able to get back in later in the fall and disk them under – if not, with the mild winter, we could have some volunteers left in the fields that will also need to be monitored. -CDB
Control Spring Rye Before it Becomes a Nuisance

Most rye is at least 6 inches tall by now, with some reaching nearly a foot tall. Controlling rye as soon as possible, and ideally before it is much more than 8 inches tall, will yield the most results in terms of nitrogen release to the crop and will reduce the chance of your next crop being suppressed by the residue. While rye is still small it can be controlled with an herbicide like glyphosate or through light disking. After a week or two the rye should be broken down enough that it won’t suppress your upcoming crops, and it will release between 30 and 50 lbs/A of nitrogen, which you can deduct from the amount of fertilizer you apply.

It may seem counterintuitive, but letting rye get bigger does not result in more nitrogen being made available. The amount of available nitrogen actually decreases after the plant gets taller than 8 inches. At that point nitrogen gets used up breaking down the woodier rye plant. Additionally, there is more risk that the rye will suppress the next crop if you allow it to get bigger. If your rye does get away from you, you can theoretically control it by mowing or crimping when the tillers are past the boot stage but before the seed heads are out (see Image 1). However, it is better to control it now and get benefit from the release of nitrogen.

Rye vs Annual Rye: We have received a few questions about the difference between the two types of available rye, rye (grain rye) and Annual Rye (ryegrass). Both may be planted in the fall, and both will scavenge nitrogen and improve the soil, but annual rye is a smaller plant at full maturity, and it may or may not overwinter, depending on the variety. If annual rye does overwinter, it is important to control it before it reseeds itself. Annual rye is best controlled in warm weather. The directions for the Cornell Cover Crop website are as follows: “The timing of herbicide applications is important to control ryegrass. Apply glyphosate at 3 pt/ac when the grass is 6-9 inches tall, day temperatures are greater than 50° F, and the weather is sunny. A second or third application may be necessary to burn down ryegrass. Simazine can be added to the tank mix but requires rain to activate; Atrazine should not be tank-mixed with other herbicides. Apply 14-21 days after the glyphosate. Atrazine also needs rain to activate.” Annual rye may also be controlled as early as possible by disking. The sod may be quite thick, presenting some difficulty.

Like regular rye, you can deduct 30-50 lbs (some sources say even more) of nitrogen from your fertilizer plan based on what becomes available from the annual rye.

For more information visit the Cover Crop Website: http://www.hort.cornell.edu/bjorkman/lab/covercrops/annual-ryegrass.php

Websites of Interest

Diagnose pest and disease problems using color pictures: http://vegetablemdonline.ppath.cornell.edu/
Cornell Guidelines for fruit and vegetables: http://www.nysaes.cals.cornell.edu/recommends/
Cucurbit Downy Mildew forecast: http://www.ces.ncsu.edu/depts/pp/cucurbit/
USDA Fruit and Vegetable Market News: www.marketnews.usda.gov/portal/fv
Managing Damping-off in Vegetable Transplants in the Greenhouse

By Meg McGrath, Long Island Fruit and Vegetable Update, NO. 1, April 5, 2012: Damping-off can be very destructive in the greenhouse due to close plant spacing. Fortunately, ability to prevent the pathogen from being present and to avoid favorable conditions in the greenhouse means it is easier to manage damping-off there than in the field. Use good sanitation: clean and disinfect everything before seeding. Pathogens that cause damping-off can be in soil around the greenhouse and unsterilized seeding mix, and they can survive on trays and pots. Clean shoes before entering the greenhouse. Keep the hose end off the ground. Select sterilized seeding mix with good drainage.

While watering plants, avoid the possibility of splash moving soil to plants. Be careful not to overwater, especially during periods of cloudy, rainy conditions. Adjust water amount based on conditions and plant needs so that the seeding mix does not stay wet for long periods and is dry the next day. Water early in the day and provide air flow to reduce humidity so that soil will dry quickly. Provide good plant spacing. It is also important not to underwater as dry conditions are favorable for Rhizoctonia, another damping-off pathogen, and will stress seedlings, which can increase susceptibility. There are biocontrol products that can be amended to mix before seeding. Previcur Flex, a conventional fungicide with targeted activity for Pythium and Phytophthora, is labeled for use in the greenhouse on tomato, leaf lettuce, cucurbits and peppers. It can be applied before seeding and/or after emergence, and through drip irrigation. Note the use directions state not to apply to dry growing mix, not to apply to plants when sunlight will be intense afterwards (evening application recommended), and not to mix with other products.

Where seedlings are dying or growing poorly (wilting, stunted), first confirm that it is damping-off by looking at the roots of affected plants. Roots of diseased plants will be brown and the outer layer may be partly rotted off. Seedlings can collapse due to other causes, including excessive fertilization, high levels of soluble salts, excessive heat or cold, excessive or insufficient soil moisture, bleach residue on trays, and severe insect infestations. Roots of these plants will be a healthy white to tan color. If damping-off is likely the cause, it is important to separate trays with diseased seedlings from those that are not affected. Trays with affected seedlings should be discarded.

Fungi that cause damping-off can be spread by splashing water. The most common pathogen causing damping-off, Phytophthora, develops best under wet soil conditions. Another important step in management is to try to determine the source of the pathogen when damping-off occurs so that it can be controlled to minimize the chance of this disease occurring again next year. Damping-off pathogens exist in soil. Look for sources of soil in and around the greenhouse that could have gotten into seeding trays such as by splashing water. Dispose of trays that held diseased plants.

Large Insect Populations are Possible this Year, but Many Factors Determine Overwintering Survival and Success

By Chris DiFonzo, Fred Springborn and Megan Chludzinski, Michigan State University Extension, Department of Entomology. Published March 29, 2012

Freezing temperatures are detrimental to many forms of life, including most insects. Insect are exothermic (cold-blooded), which means they cannot produce their own body heat. So to survive and thrive in climates such as ours, insects have developed several ways to deal with cold weather.

The first strategy is to avoid freezing conditions altogether. The classic example of this is the monarch butterfly, which migrates south in the fall to overwintering sites in Mexico. In the spring, the monarch population makes its way back north. Eventually the children or grandchildren of last year’s monarchs return to Michigan. Pest insects such as armyworms, earworms, potato leafhoppers, and some grain aphids do not survive the winter in Michigan either. Instead, populations continuously reproduce in southern states, and insects move north with spring weather fronts to recolonize northern states. The mild winter of 2011, and above normal temperatures this spring, did not allow these insects to survive in Michigan, but much of the central United States has been above normal as well, giving some migratory insects a head start. For example, on March 22, the University of Kentucky reported armyworm moth catches in their pheromone traps at levels that are at least two weeks ahead of normal.

Insects that do overwinter in Michigan [and New York!] have ways to survive typical winter weather. Death by freezing isn’t so much related to low temperature itself as it is the result of ice crystals forming in the body. Rapid formation and expansion of ice crystals cause cells to burst, resulting in organ and gut damage. Some insects are freeze-tolerant – they actually survive the formation of ice crystals in their body by producing ice nucleating proteins that “control” the freezing process.
Other insects are freeze avoidant— they accumulate antifreeze in their cells prior to the winter. The antifreeze is composed of specialized carbohydrates (in a fancy term, “cryoprotectants”) that lower the freezing point of the body fluid, preventing the formation of ice crystals. Examples of cryoprotectants are the sugars trehalose and mannitol, or the sugar alcohol glycerol (we humans use glycerol as an antifreeze in industrial processes). These cryoprotectants are effective as long as the insect body cools gradually (i.e., the insect acclimates to the cold, as in the fall, triggering the production of the compounds) and until temperatures get really cold (beyond the freezing point of the antifreeze). To avoid exposure to severe cold and or fluctuating temperature, many insects overwinter under plant debris or burrow into the soil. As air temperature changes, the temperature under the cover rises and falls slowly (especially when insulated by snow cover), giving insects a far more stable environment.

Some examples: A first generation corn borer larvae collected in June is easily killed by cold. However, a second generation corn borer collected in December is freeze tolerant, and can survive for months at -4°F, even with ice crystals in its tissue. Overwintering eggs of many aphid species contain protectants like glycerol and mannitol to avoid freezing. In the case of soybean aphids, which spend the winter in the egg stage on exposed branches of buckthorn, eggs can be super-cooled to -29°F. Bean leaf beetles overwinter as adults, and typically survive temperatures only into the 20s°F. However, beetles overwinter in protected areas in woodlots or under leaf litter to avoid colder temperatures. In general, milder winter temperatures put less stress on these and other overwintering insects, and likely increase overall survival into the spring.

Once an insect successfully overwinters by avoiding freezing, it must successfully emerge, perhaps feed, colonize a crop, and eventually reproduce. A mild spring can help or hurt this process. For many adult insects (and some larvae) emerging from winter sleep, often the first task is to find food. Until food is available, they must live off of fat reserves stored in the body from the previous year. For other insects that overwinter as late-stage larvae, feeding is not an option; the fat reserves have to last through pupation, and even into the adult stage. If insects do not find food or complete development before energy reserves run out, the result is lower fitness, less reproduction, or even starvation. Thus being active too early or out of sync with a host crop can lead to reduced overall fitness. For example, alfalfa weevils emerging now in southern Michigan will likely find legumes to eat. But ladybird beetles that emerge early may not find enough prey to survive.

Early insect emergence often times coincides with earlier green-up of perennial crops or bud break on overwintering hosts, giving the insect population a head start and leading to larger pest populations. However, a cold snap can still kill spring vegetation and set the population back. For example, in 2007 a hard freeze damaged emerging leaves of buckthorn. This reduced the feeding sites for soybean aphids that had just emerged on these leaves, and 2007 ended up as a low aphid year in the state, although initial spring populations were high. Likewise, early pest emergence may coincide with earlier planting of the host crop (based on degree days), again leading to larger pest populations. However, a cold or wet period can suddenly set planting or emergence back, so that the insect life cycle and crop are out of synch. For example, in some years with delayed planting, corn rootworm larvae emerged into bare field or corn borer moths did not find tall enough corn to produce a large first generation.

So the bottom line is to be observant as the spring progresses. Chances are that we will see a few unusually large insect populations, or some population peaks occurring earlier than expected. But, there could be weather events in April and early May that kill insects, or create synchrony problems between insect life cycles and crops. From the perspective of many insects, this is just another year in a bug’s life.

For another extension article on this subject, see “Mild Winter, Record-Breaking March Temperatures: How Will Field Crop Insects Respond?” in the March 22 edition of The Bulletin from the University of Illinois.

Gluttons for punishment on this subject can read “Insect overwintering in a changing climate” from the Journal of Experimental Biology.

This article was published on MSU Extension News. For more information from MSU Extension, visit http://news.msue.msu.edu. To contact an expert in your area, visit http://expert.msue.msu.edu, or call 888-MSUE4MI (888-678-3464).
I know that many of you have started planting sweet corn and are also getting ready to plant other crops like potatoes. As I have in the past, I thought it might be a good time to stop and think about calibrating your planter’s fertilizer rates. If it’s been a while (or never in many cases) now is a good time to do it. Over time, many different parts can get wore out including the augers in the bottom of your fertilizer hoppers. Fertilizers are very corrosive and every year more and more of the auger is chipped away changing the amount of fertilizer being delivered.

I found that an easy way to determine how much fertilizer you’re putting out is to determine how far you need to drive to equal 1/50th of an acre using your row spacing. For example—if you’re between row spacing is 30” then you need to travel 349 feet to equal 1/50th of an acre. I’ve made it even easier for you and listed some common spacing’s in the table to the right. It may seem strange to see spacing in the table of 108”, but if you’re growing pumpkins, it may be a common spacing for some of you. If your row spacing doesn’t show up in the table, you can figure it out by dividing 43,560 by your spacing in feet. Multiply that number by 0.02 (which is the decimal equivalent for 1/50th) and that is the distance you need to travel.

After you have determined how far to travel, the next step is disconnect the drop tubes from your fertilizer hoppers and attach a bag or bucket underneath to catch the fertilizer. Make sure the hoppers are at least half full of fertilizer when you start. Also be sure that the auger’s are “primed” by dropping the planter Using flags or some kind of stakes, drive the required distance, remove the bucket or bag and weigh it. If you’re using something that’s heavier than a plastic bag, be sure to subtract this weight from your sample. Once you have the weight multiply it by 50 and that is the approximate amount of fertilizer you’re applying in pounds per acre.

For example, if the amount you weigh from one tube equals 6 pounds, then you are applying 300 pounds of fertilizer per acre. **Do not add** the fertilizer amounts from the hopper together. The value you get per row should be similar. If they are not, you may need to exam your augers to see if they are worn differently etc. If the rates are similar, but not what you thought you were putting out, you need to review your manual (if you have one) to check your sprocket settings. I would also recommend you do this 2 or 3 times and average the values together per row. I would recommend you do this every time you change a sprocket combination as well.

The tables in your planters manual’s should be close but I have seen where they don’t match at all. After looking at the manual for a bit, we concluded that sometimes planters have the ability to use different augers. You could

<table>
<thead>
<tr>
<th>Length of Row to Equal 1/50 of an acre</th>
<th>Number of feet to Travel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row Spacing (inches)</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>373</td>
</tr>
<tr>
<td>30</td>
<td>349</td>
</tr>
<tr>
<td>32</td>
<td>327</td>
</tr>
<tr>
<td>34</td>
<td>308</td>
</tr>
<tr>
<td>36</td>
<td>290</td>
</tr>
<tr>
<td>38</td>
<td>275</td>
</tr>
<tr>
<td>40</td>
<td>261</td>
</tr>
<tr>
<td>48</td>
<td>218</td>
</tr>
<tr>
<td>60</td>
<td>174</td>
</tr>
<tr>
<td>96</td>
<td>109</td>
</tr>
<tr>
<td>108</td>
<td>97</td>
</tr>
</tbody>
</table>

(Continued from page 4)
have a “normal output” auger or a “high output” auger and depending on which type you have you need to read the right table in the manual (trust me, that’s from personal experience). If you’re replacing one auger, it’s better to just replace all of them at the same time that way you know everything will be more of the same when you head out to plant your crop.

Also be sure to check your fertilizer disk openers and make sure they are not worn out. The rule of thumb for fertilizer placement is 2 x 2 or 2” below the seed and 2” to the side of the seed. Anything closer than this can result in fertilizer burn on your crop. Many times when we see fertilizer injury it’s not because the rates were too high or the coulter was mounted wrong, it’s because the disk’s were worn and instead of being the 2” below the seed, it was right even in the bottom of the seed furrow. Also, make sure your drive chains are all in good shape and none of the links are seized – even if you stored them in oil, be sure to check them and make sure they roll smoothly.

When’s the last time you checked your seed tube to make sure it wasn’t worn out? It is all too common to find seed tubes that are worn on the very ends and feels like a sharp lip. This can cause problems because it kind of flips the seed instead of allowing it to fall into the bottom of the seed furrow resulting in seed that may not be at the depth you want and uneven emergence! Even before you get that far, make sure your meters and fingers are working properly. If you suspect a problem you can usually take them to your local dealer (call first) to have them checked or there are some private companies that will also test your meters to see if there is a problem. Don’t forget to bring some of your seed to in order for them to run an accurate test. If you have more questions on this, give me a call and I can get you to someone that can help.

Lastly, when is the last time you checked your closing wheels to make sure they were closing your seed furrow properly? Hopefully they are aligned over the center of your seed furrow, but how do you know? One way I have seen it done is to take all the pressure off your seed units and find a hard piece of ground like a dirt driveway. Drop your planter (with seed in the hoppers) and drive 10 feet or so. Then get off and check to see where the seed dropped and where your closing wheel marks are (keep in mind that sometimes seed will bounce around a little bit on that hard ground). It helps if you have someone else with you walking behind the planter to observe where the seed is actually dropping and how the closing wheels line up. Then, you can make the adjustments you need to and do it again until it’s right.

One piece of additional equipment that I highly recommend attaching to your planter is something called a Keeton Seed Firmer made by Precision Planting. Inc. It’s difficult for me to really describe what they are and how they attach, but they really help make sure that your seed is placed correctly in the seed furrow. It is a hardened piece of plastic in the shape of a fin that attaches to your gauge wheels and slides in the bottom of the furrow. As your seed drops out of the seed tube, the Keeton seed firmer keeps it from bouncing all around and can help improve evenness of stands and germination. Go to http://www.precisionplanting.com/ and search under “Products” for Keeton Seed Firmers. For around $40 per row, they are well worth the money in my opinion.

You can also use the same formula and techniques to determine how much fertilizer you’re using if you are sidedressing with a Cole or other type of unit. If you have questions please feel free to call Chuck at 518-859-6213. –CDB

Berry Updates

The following is an edited version of the New York Berry News’ April “Berry Barometer” written by Cathy Heidenreich.

Frost Protection: As blueberries and strawberries progress toward bloom, risk from frost increases. Have overhead irrigation/floating row cover ready and monitor conditions in your location closely. For more information on this topic visit our new frost protection web page.

REMINDER: Growers with NAP insurance should report even possible cold/frost damage losses to FSA within 7 – 10 days of the occurrence to qualify.

Fertilization – Now is the time for the first of 2 split applications on blueberries, raspberries and ribes.

Water Management - Due to the extremely dry weather you may need to begin irrigation unless we get decent rainfall within the next few days. Irrigate as needed to maintain 1-2” water per week. If conditions remain dry, take extra care with new plantings to water immediately after transplanting to settle soil around roots.
Berry Updates Continued

STRAWBERRIES:

Weed management – Poast or Select for perennial grasses; Stinger for dandelions and thistles; Prowl H20 for banded applications between rows. Hooded or shielded applications of Gramoxone Inteon or Chateau to row middles; do not apply after fruit set.

Disease management - Frost injury on blossoms and rain sets up the perfect condition for *Botrytis fruit rot* (gray mold) in strawberries. Begin protection using alternating fungicides at early bloom (10–20%) then 10 days later. *Anthracnose* may be serious this year. Inoculum of this warm weather pathogen often builds up in plantings under conditions like those we experienced this spring – setting the stage for fruit infections. This disease may occur on both green and ripe fruit, but is most common on ripe fruit following periods of warm, wet weather. Monitor fields for the presence of anthracnose, particularly if favorable weather conditions exist. Fungicides will not stop an infection once it has begun, so protectant materials are recommended in those fields with a previous history of the disease. In new plantings monitor plants for *Leaf Spot*. This can especially be an issue when overhead irrigation is used.

Insect management - Bud weevil (clipper) adults puncture blossom buds while feeding and deposit eggs in the nearby mature buds. Action threshold is more than one primary or secondary flower bud or more than 2 tertiary flower buds clipped per truss, or more than one injured truss per foot or row.

Tarnished plant bug adults have already been observed in plantings although recent cooler weather may have slowed development slightly. Scout for TPB any time from just before blossoms open to harvest. Strike flower clusters over a white paper plate. Suggested action threshold is 0.5 nymphs per cluster or 4 out of 15 clusters with 1 or more nymphs. *Spittle bug* also appears around bloom, leaving frothy white masses on stems and leaves. These masses harbor nymphs which pierce stems and suck plant juices. Extensive feeding may lead to plant stunting and reduced berry size. Damaged leaves appear wrinkled and darker green than healthy leaves. Spittle masses are a great nuisance to pickers. Suggestion action threshold is one spittle mass per sq. ft. of row. New plantings should also be monitored for *white flies* and *two-spotted spider mites.*

BLUEBERRIES:

Weed management – Gramoxone Inteon or Scythe before new cane emergence. Follow any special instructions when making applications.

Disease management - Given the early, warm and dry conditions, mummyberry may not be as serious a problem this year. Plantings without previous history of disease should be monitored for signs of primary infection (shoot blight phase). Infected leaves and shoots wilt, turn violet brown, and die. Grayish masses of spores may be evident along midribs of blighted leaves. If shoot blight is detected in your planting, protection of blossoms is essential.

Insect management - Adult moths of *cranberry and cherry fruit-worms* appear during late May to early June but have already been trapped in Michigan. Use pheromone traps to monitor adult flight activity and aid in timing of applications.

RASPBERRIES AND BLACKBERRIES:

Insect pest management - Watch for *Raspberry fruit worm* when they begin feeding on young leaves and buds. Adults skeletonize leaves and hinder fruit development. Small larvae feed inside flower buds and then bore into young fruit, causing them to dry up or decay and fall off. These pests are especially a problem in weedy fields. Protectant applications should be made as soon as damage is detected in early spring (just before blossoms open). *Raspberry sawfly* larvae are ¼” pale green worms that feed on the outer edges of leaves, chewing out irregular holes and sometimes skeletonizing leaves. These insects are also active in early May in typical years; products that are effective against both insects include: Molt-X, Sevin 4F, Delegate WG, SuffOil-X (Labeled only for sawfly) or Entrust, the only organically approved insecticide which is also only labeled for sawflies.

Weed Management: Many herbicides need to be used before new cane emergence to avoid damage to the canes. Err on the side of caution if new canes have begun emergence. In new plantings, apply Devrinol after planting and before seedling weeds emerge. Till or water in within 24 hours.
Grower Classifieds

Do you need to buy or sell something that vegetable and small fruit growers in the Capital District might be interested in? Let us know, and we will post it here in the weekly grower classifieds. Try to keep information short, just like with a newspaper classified. We will include up to 50 words and a small (2 inch by 2 inch) picture. This service will be free to all enrolled growers. The deadline for submission each week is Wednesday at 12 noon. If you have any questions, please contact Crystal at 775-0018 or at cls263@cornell.edu.

Upcoming meetings and notices

Friday, May 18: Recipe to Market workshop- 9:30 am to 3:30 pm at Proudfit Hall on Route 22 in Salem, NY. The workshop will provide future food entrepreneurs with knowledge of critical issues needing consideration before launching a food manufacturing business. Participants will obtain a good grounding in food business basics, and a road map pointing to where you need to go before launching that business.

Saturday, May 19: Good Manufacturing Practices for the Production of Acidified (Pickled) Foods- 8:30 am to 4:00 pm at the Battenkill Kitchen, Inc., 58 East Broadway, Salem, NY. The workshop will provide hands-on practical training designed to provide current and future small processors with the basic elements needed to understand the main processing steps, critical control points and record keeping to safely manufacture specialty food products for the marketplace. Both technical information and practical training will be demonstrated by the production of BBQ-type sauce and pickled vegetables at the workshop. This is a hands-on workshop with lab exercises.

Registration for each class is $50 and includes materials. Participants should bring their own lunch. Snacks and refreshments will be provided. Workshops are limited in size and the deadline to register is May 11. For more information about the workshops and the Battenkill Kitchen, Inc. visit www.battenkillkitchen.org or call Trish Kozal at 518-854-3032 or Steve Hadcock, Cornell University Cooperative Extension at 518-380-1497.

Weekly and Seasonal Weather Information

<table>
<thead>
<tr>
<th>Site</th>
<th>Growing Degree Information Base 50°F</th>
<th>Rainfall Accumulations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Season Total 3/1—4/17/2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2011 Total 3/1—4/17/2011</td>
<td></td>
</tr>
<tr>
<td>Albany</td>
<td>45.1</td>
<td>145.6</td>
</tr>
<tr>
<td>Bennington, VT</td>
<td>40.9</td>
<td>114.4</td>
</tr>
<tr>
<td>Clifton Park</td>
<td>45.5</td>
<td>141.5</td>
</tr>
<tr>
<td>Glens Falls</td>
<td>36.1</td>
<td>87.6</td>
</tr>
<tr>
<td>Guilderland</td>
<td>47.0</td>
<td>126.5</td>
</tr>
<tr>
<td>Granville</td>
<td>36.1</td>
<td>106.6</td>
</tr>
<tr>
<td>Hudson</td>
<td>55.6</td>
<td>187.2</td>
</tr>
</tbody>
</table>

Cornell Cooperative Extension and the staff assume no liability for the effectiveness of results of any chemicals for pesticide use. No endorsement of any products is made or implied. Every effort has been made to provide correct, complete, and current pesticide recommendations. Nevertheless, changes in pesticide regulations occur constantly and human errors are still possible. These recommendations are not substitutes for pesticide labeling. Please read the label before applying any pesticide. Where trade names are used, no discrimination is intended and no endorsement is implied by Cornell Cooperative Extension.

Cornell Cooperative Extension provides equal program and employment opportunities.