

NEW YORK ORCHARD SOIL HEALTH TEAM

DEBBIE ALLER
Extension Associate,
Cornell - NYSH Program

GREG PECK
Associate Professor,
Cornell University

Tree Fruit Specialist, ENYCH Program

DAN DONAHUE
Tree Fruit Specialist,
ENYCH Program

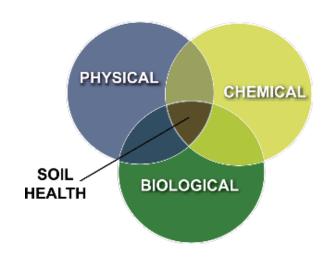
JANET VAN ZOEREN

IPM Specialist,

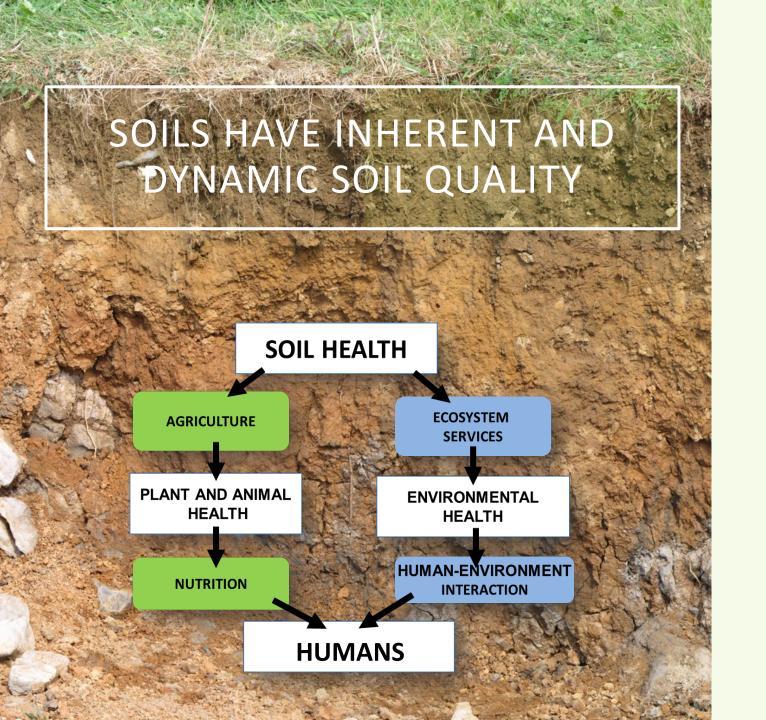
CCE - LOF program

KYLE WICKINGS
Associate Professor,
Cornell AgriTech

MARIO MIRANDA SAZO
Fruit Extension Specialist,
CCE -LOF program


DIANA OBREGON
Postdoc, NYSIPM Program

SOIL NUTRITION



SOIL HEALTH

'the capacity of the soil to function or the ability of the soil to perform key ecosystem functions that sustain plants, animals, and humans'

INHERENT SOIL QUALITY

The result of a location's unique combination of minerals, climate, biology, relief, and time

DYNAMIC SOIL QUALITY

Changes due to human use and management

SOIL HEALTH

Focuses on the dynamic and anthropogenic aspects of soil quality

SOIL HEALTH IN WASHINGTON STATE APPLE PRODUCTION

Important soil health indicators for Central WA orchards:

- AWC & % sand (water availability indicators)
- Bean bioassay & lesion nematode (root health indicators)
- Macro & micronutrients (nutrient availability)
- Penetration resistance or bulk density (compaction indicator)
- POXC & % OM (organic matter indicator)
- PMN (organic N availability)

RESEARCH ARTICLE

Soil health indicators for Central Washington orchards

Sara Tianna DuPont 10 **, Lee Kalcsits 10, Clark Kogan 20

1 Tree Fruit Research and Extension Center, Washington State University, Wenatchee, Washington, United States of America, 2 Department of Mathematics and Statistics, Washington State University, Pullman, Washington, United States of America

https://doi.org/10.1371/journal.pone.0258991

PREVIOUS RESEARCH IN NEW YORK

GROUNDCOVER MANAGEMENT - MULCHING

- Increase in tree growth and yield is inconsistent
- Increase SOM and biological activity
- Increase water holding capacity, making the orchard more resilient to drought
- Increase plant available minerals and disease suppression
- Reduce soil erosion in hillside plantings
- Increase weed suppression, especially in organic systems
- Reduce leaching of nutrients (nitrate) and pesticides

WHY CARE?

ENVIRONMENTAL PROTECTION

COST/ECONOMICS

PRODUCT RESTRICTIONS

TIME CONSTRAINTS

CONSUMER CONCERNS

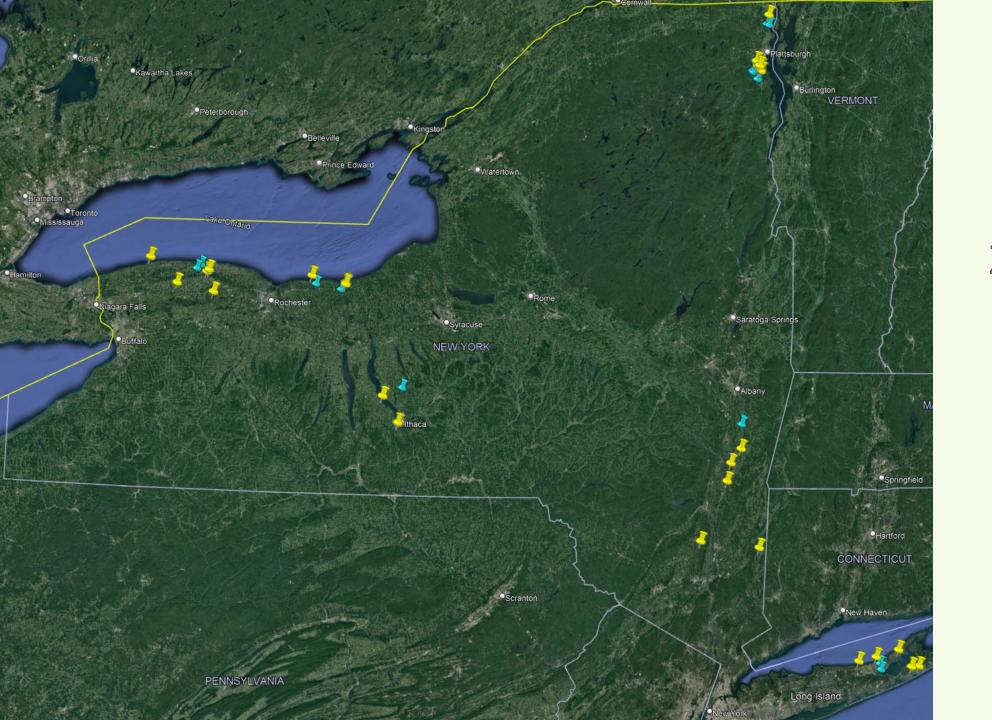
PRODUCT EFFICACY

Economic Effects of Soil Health Practices on Gary Swede Farm, LLC (2018)

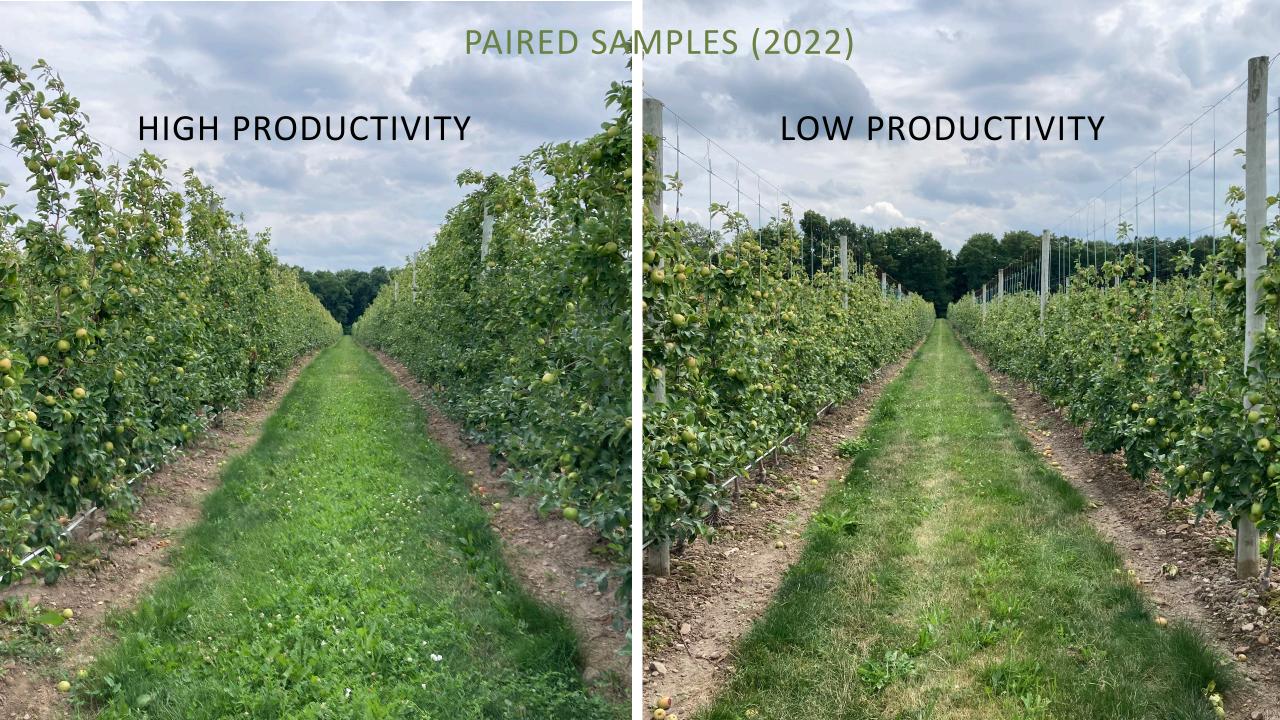
Increases in Net I	icome			
Increase in Income				
ITEM	PER ACRE	ACRES	TOTA	
Yield Impact Due to Soil Health Practices	\$71.95	600	\$43,16	
Total Increased Income			\$43,16	
Decrease in Cos	it			
ITEM	PER ACRE	ACRES	TOTA	
Reduced Machinery Cost due to Reduced Tillage	\$23.43	1,500	\$35,15	
Nutrient Savings due to Nutrient Mngmnt.	\$40.65	600	\$24,39	
Value of Decreased Erosion due to Soil Health Practices	\$2.25	1,500	\$3,36	
Total Decreased Cost			\$62,9	
Total Increased Net Income				
Total Acres in the Study Area				
Per Acre Increased Net Income				

Decreases in Net Income					
Decrease in Income					
ITEM	PER ACRE	ACRES	TOTAL		
None Identified			\$0		
Total Decreased Income			\$0		
Increase in Cost					
ITEM	PER ACRE	ACRES	TOTAL		
Cost of Setting up Planter to Handle Residue	\$0.72	600	\$432		
Cover Crop Costs	\$51.00	450	\$22,950		
Residue and Tillage Mgmt. Learning Activities	\$0.07	1,500	\$98		
Cover Crops Learning Activities	\$0.22	450	\$98		
Nutrient Management Learning Activities	\$0.16	1,500	\$244		
Total Increased Cost					
Annual Total Decreased Net Income			\$23,822		
Total Acres in this Study Area					
Annual Per Acre Decreased Net Income					

Annual	Change in Total Net Income = \$82,25	7
Annual	Change in Per Acre Net Income = \$55	5


American Farmland Trust - https://farmlandinfo.org/publications/soil-health-case-studies/

DRIVING QUESTIONS


- 1. What is the soil health status of orchards in NYS?
- 2. Is soil health the same in perennial vs. annual cropping systems?
- 3. What soil health indicators are the best predictors of yield/fruit quality in orchards?
- 4. What orchard management practices impact soil health indicators?
- 5. Are there opportunities to improve soil health in NYS orchards?

2021 - 2022 STATEWIDE ORCHARD SAMPLING LOCATIONS

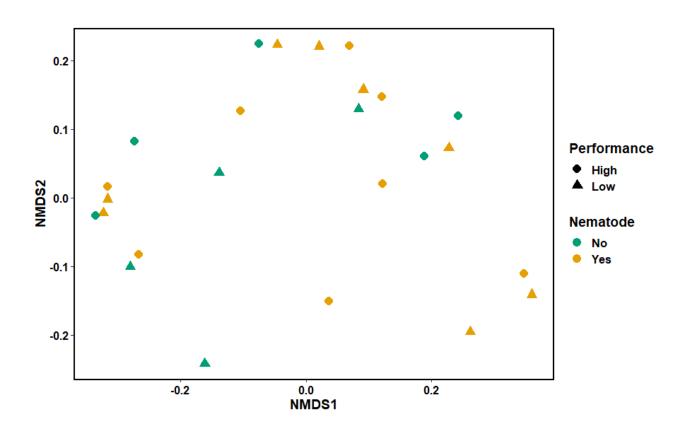
SAMPLING

SOIL SAMPLING

Cornell Soil health (CASH) test Nematodes (Clemson) Root Health Bioassay

FOLIAR SAMPLING

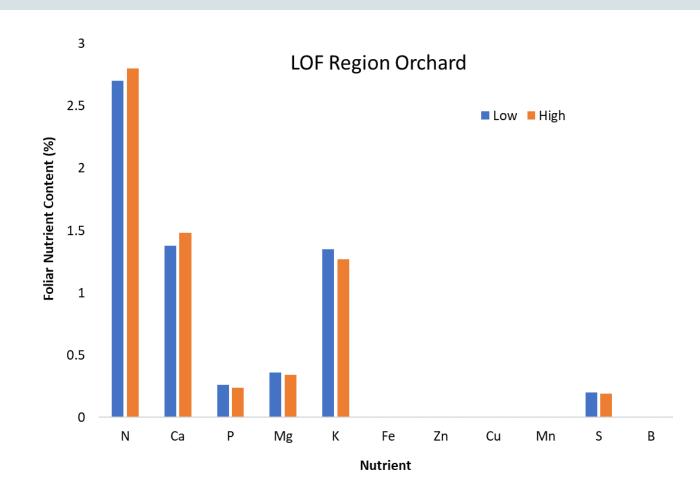
Macro and micronutrients (Dairy One)


MANAGEMENT SURVEY Fruit yield/quality
Grower management
practices

Group	Indicator	Value	Rating	Constraints
physical	Predicted Available Water Capacity	0.25	92	
physical	Surface Hardness			Not rated: No Field Penetrometer Readings Submitted
physical	Subsurface Hardness			Not rated: No Field Penetrometer Readings Submitted
physical	Aggregate Stability	9.4	11	Aeration, Infiltration, Rooting, Crusting, Sealing, Erosion, Runoff
biological	Organic Matter Total Carbon: 2.91 / Total Nitrogen: 0.18	2.9	43	
biological	Predicted Soil Protein	8.60	73	
biological	Soil Respiration	0.4	28	
biological	Active Carbon	718	88	
chemical	Soil pH	6.7	100	
chemical	Extractable Phosphorus	36.7	100	High Phosphorus, Environmental Impact Risk
chemical	Extractable Potassium	148.0	100	
chemical	Minor Elements Mg: 98.5 / Fe: 0.7 / Mn: 0.9 / Zn: 0.9		100	

PRELIMINARY RESULTS - NEMATODES

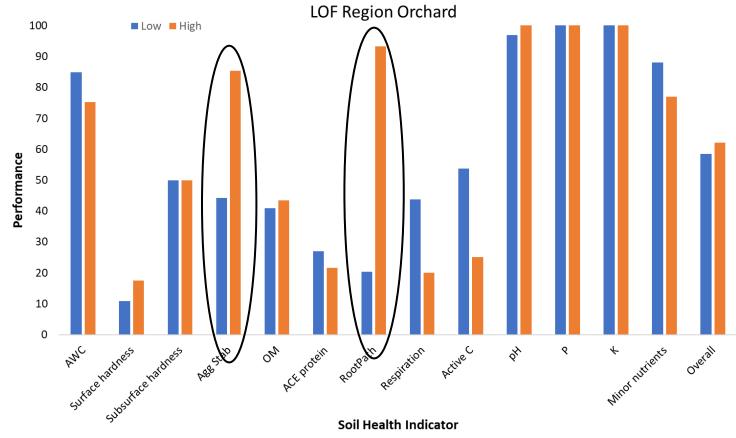
NO CLEAR RELATIONSHIP BETWEEN NEMATODE PRESENCE AND PERFORMANCE


Nematodes present: lesion, dagger, pin, ring, root knot, spiral

92% of orchards (23 of 25) had nematodes present

64% of orchards (16 of 25) had levels of concern to plant productivity

FARM EXAMPLE – LOF REGION FOLIAR NUTRIENTS



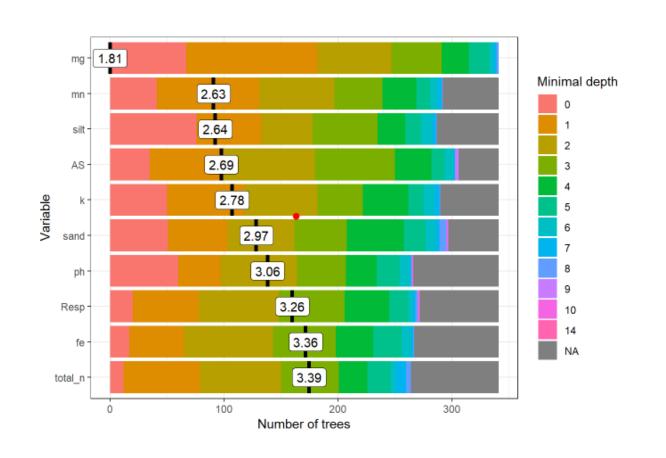
Is the soil health test telling us something the foliar and soil nutrient tests are not?

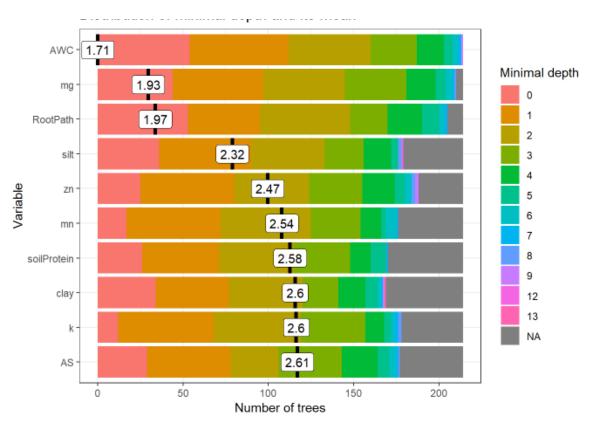
FARM EXAMPLE – LOF REGION SOIL HEALTH INDICATORS

PRELIMINARY RESULTS - VARIABLE CLUSTER ANALYSIS (YIELD)

2021

2022


Number of	Most Representative	Cluster Proportion of	Total Proportion of
Members	Variable	Variation Explained	Variation Explained
10	Total Carbon	0.854	0.267++
5	% Silt	0.687	0.107+
3	Zn	0.759	0.071
3	Subsurface hardness	0.751	0.07
3	В	0.61	0.057
2	C/N ratio	0.854	0.053
2	Mg	0.804	0.05
2	р	0.69	0.043
1	Root pathogen pressure	1	0.031
1	Aggregate stability	1	0.031


Number of	Most Representative	Cluster Proportion of	Total Proportion of
Members	Variable	Variation Explained	Variation Explained
9	Soil Organic Carbon	0.698	0.233
7	Ca	0.683	0.177
4	% Sand	0.854	0.127
3	Subsurface hardness	0.709	0.079
3	Al	0.833	0.062
2	S	0.818	0.061

Consistent variables clustering: Soil Carbon, texture, compaction, nutrients

PRELIMINARY RESULTS - RANDOM FOREST MODEL (YIELD)

2021 2022

FUTURE WORK

- Continue to expand soil health sampling
 - 20 orchards in 2023
- Maintain paired sampling method
- Continue nematode & foliar nutrient analyses
- Collect data on soil arthropods (e.g., collembolas, earthworms) – NEW!
- Bulk density data NEW!
- Create orchard soil health case studies –
 NEW!
- Develop minimum dataset of soil health indicators for NYS orchards
- Expand into other perennial fruit crops

SUMMARY

Orchard soil health is the capacity of soil to support

THANK YOU AND QUESTIONS

Debbie Aller, PhD
da352@cornell.edu
www.newyorksoilhealth.org

