Should apple viruses be of concern to the New York apple industry?

Western New York Fruit Conference February 28, 2023 Anna Wunsch

Outline

• What is the current status of virus infections in New York apple orchards?

• Why should apple viruses be of concern?

• What management strategies are available for apple viruses?

Viruses aren't usually a major focus of apple disease management.

Fire blight (Erwinia amyolvora)

Photo: David Rosenberger, Cornell University

Apple scab (Venturia inaequalis)

Photo: Awais Khan, Cornell University

Summer fungal diseases: rots, sooty blotch, flyspeck

Photo: Srđan G. Aćimović, Cornell University

Virus diseases?

But apple viruses are widespread in NY orchards.

Viruses were detected in the majority (64%) of 2,620 samples tested in a 2017 survey of NY orchards.

Number of viruses detected

Virus	Percent of samples	
1. Apple stem pitting virus (ASPV)	42.9	
2. Apple chlorotic leaf spot virus (ACLSV)	20.9	
3. Apple stem grooving virus (ASGV)	7.1	
4. Tomato ringspot virus (ToRSV)	2.4	
5. Apple mosaic virus (ApMV)	1.3	

Fruit Quarterly

Distribution of Viruses in New York Apple Orchards

Marc Fuchs¹, Craig Kahke², Dan Donahue³, Anna Wallis⁴ and Michael Basedow⁴ ¹cornell University, Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Geneva, NY 14456 ²cornell Cooperative Extension, Lake Ontario Fruit Program, Lockport, NY ³Cornell Cooperative Extension, Eastern NY Commercial Horticulture Program, Highland, NY ⁴Cornell Cooperative Extension, Eastern NY Commercial Horticulture Program, Plattsburgh, NY

Keywords: Apple, virus, distribution, orchard, New York

This research was partially supported by the New York Apple Research and Development Program

Apple viruses are primarily transmitted through apple propagation.

Virus	Percent of samples	Transmission methods
1. Apple stem pitting virus (ASPV)	42.9	Vegetative propagation (grafting, budding)
2. Apple chlorotic leaf spot virus (ACLSV)	20.9	Vegetative propagation (grafting, budding)
3. Apple stem grooving virus (ASGV)	7.1	Vegetative propagation (grafting, budding)
4. Tomato ringspot virus (ToRSV)	2.4	Nematode vectors
5. Apple mosaic virus (ApMV)	1.3	Vegetative propagation (grafting, budding)

The top three viruses in NY apple orchards cause asymptomatic (latent) infections.

ASPV, ACLSV, and ASGV cause no noticeable symptoms in most commercial cultivars.

Virus	Percent of samples
1. Apple stem pitting virus (ASPV)	42.9
2. Apple chlorotic leaf spot virus (ACLSV)	20.9
3. Apple stem grooving virus (ASGV)	7.1
4. Tomato ringspot virus (ToRSV)	2.4
5. Apple mosaic virus (ApMV)	1.3

Which of these trees are infected with latent viruses?

Why should these latent viruses be of concern if they don't cause noticeable symptoms?

Coinfection with ASPV and ACLSV reduced yield.

Coinfection with ASPV and ACLSV may reduce fruit quality.

Do latent virus infections predispose trees to decline?

ASPV and ACLSV incidence were higher in declining vs. non-declining trees in a Honeycrisp block on M.9-Nic29.

Honeycrisp on M.9-Nic29

Rapid apple decline was demonstrated in an experimental setting for the first time in 2022.

Four of the 30 trees that collapsed during the 2022 growing season.

Rapid apple decline was demonstrated in an experimental setting for the first time in 2022!

Gala on M.26

Rapid apple decline was demonstrated in an experimental setting for the first time in 2022!

Gala on M.26

Declined trees at a glance

Management options

New orchards

- Source material from reputable nurseries
- Use certified scion and rootstock material when possible

nell AgriTech

Established orchards

- Limit topworking
- Limit other tree stressors
 - Drought and water stress

Takeaways

1. What is the current status of virus infections in New York apple orchards?

Apple viruses are widespread in NY orchards (64% of trees sampled in statewide survey).

Takeaways

2. Why should apple viruses be of concern?

Coinfection with the two most widespread apple viruses reduced yield in our trial and may be associated with reduced fruit quality.

Latent virus infections may predispose trees to decline.

Takeaways

3. What management strategies are available for apple viruses?

Established orchards: Limit topworking and limit stressors to trees.

- **New orchards:** Be selective when sourcing planting material.
- **Industry-wide:** Ensure there are many available sources for virus-tested material.

Acknowledgements

Fuchs Program		Khan Program	Cornell Cooperative Extension
Dr. Marc Fuchs	Scottie Browning	Dr. Awais Khan	
Rosemary Cox	Jess Choi	Dr. Alicia Serrano Gomez	Lake Ontario Fruit Program
Heather McLane	Maddie Flasco	lean Sabety	Craig Kahlke, Team Leader
Fu-Wah Choi	Tori Hoyle	Jean Subery	Janet van Zoeren, Extension Specialist
Kyle Hegel	Brandon Roy		Mario Miranda Sazo, Extension Specialist

Mike Basedow, Extension Specialist

Funding Sources

USDA NIFA Critical Agricultural Research and Extension New York State Department of Agriculture and Markets New York Apple Research and Development Program

Thank you!

