
## Using UV-C: How Close are We to Implementing it and What We Need to Move Forward

Kerik D. Cox & McKenzie Schessl

Cornell AgriTech Plant Pathology and Plant-Microbe Biology Section School of Integrative Plant Science Cornell University



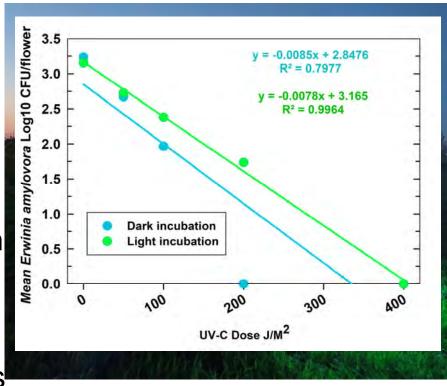


New York State Agricultural Experiment Station



## Suppression of fire blight w/UV light




# Suppression of fire blight using UV light

- Infections at bloom initiate fire blight epidemics > devastating shoot blight
- Preventing blossom blight requires precise applications of antibiotics > resistance & lack consumer appeal
- Germicidal (UV-C) light is effective against transparent bacteria, algae
  - Medicine, aquaculture, & agriculture
  - Organic approved
  - No residue



# Suppression of fire blight using UV light

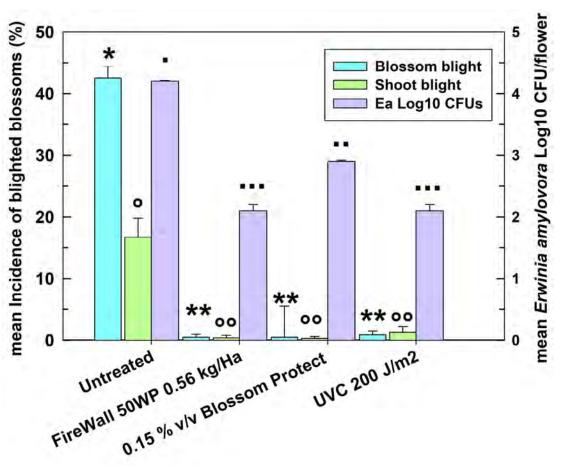
- Some pathogens & microbes can repair UV damage in sunlight (even *Erwinia amylovora*) – Use at night
- Some crops like Hemp can be injured by UV light & if dose "too low", not effective
- Works REALLY well on natural inoculum levels or organisms multiplying on surfaces (like *Erwinia amylovora*)
- Difficult to conduct natural inoculum tests with fire blight



## **UVC Trial Site at Cornell AgriTech**

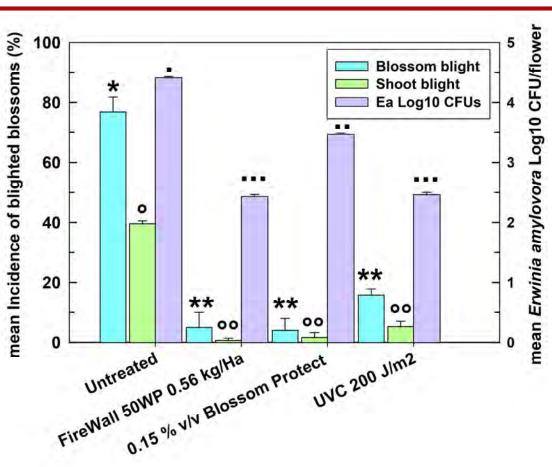
- Orchard sites (High Density Super Spindle)
- 'Evercrisp' on G.41 planted in 2019
- Reduced trellis (96") to accommodate UV-C unit for grapes
- Replicated plot panels (RCB): 4 reps w/ ten trees each: <u>V1</u> and <u>V2</u>




## **UVC -Blossom Blight Trials**

- At 80% bloom
  - Streptomycin (Firewall 50 WP 0.56kg/Ha)
  - Aureobasidium pullulans (1.05% buffer protect + 0.15% blossom protect)
- Ea 273 at 1x10<sup>6</sup> CFUml<sup>-1</sup>
- That evening > UVC 200J/m<sup>2</sup>
- 100% Bloom: Strep, Aureo, UVC 200J/m<sup>2</sup>
- Blossom blight & shoot blight incidence
- Ea populations & leaf shape and shoot growth (possible UVC injury)




## UVC Fire Blight trials (2021) – 'Evercrisp'

- Exceptionally cold bloom – low levels of infection on 'Evercrisp'
- Reduced Ea populations on flowers
- Excellent control of blossom and shoot blight in this cool season



## UVC Fire Blight trials (2022) – 'Evercrisp'

- Exceptionally warm wet year – high levels of infection on 'Evercrisp'
- Reduced Ea populations on flowers, but higher than 2021
- Excellent control of blossom and shoot blight, but still high



## UVC Fire Blight trials (2021) – 'Evercrisp'

## No differences in leaf shape & internode length

| Treatment programs (amt./100 gal)                                      | Leaf length<br>(mm)*  | Leaf width<br>(mm)* | Internode length on<br>1st year shoots (%) |
|------------------------------------------------------------------------|-----------------------|---------------------|--------------------------------------------|
| Over both inoculum doses                                               |                       |                     |                                            |
| Untreated                                                              | $82.5 \pm 0.1 a$      | $56.3\pm0.1~a$      | $39.4 \pm 0.1 \text{ a}$                   |
| Streptomycin (Firewall 50 WP 0.56kg/Ha)                                | $83.2\pm0.8\ a$       | $56.2\pm0.5~a$      | $41.1\pm2.3~a$                             |
| Aureobasidium pullulans (1.05% buffer protect + 0.15% blossom protect) | $82.6\pm0.7~a$        | $56.4\pm0.7~a$      | $39.6 \pm 0.6 \text{ a}$                   |
| UVC 200 J/m <sup>2</sup>                                               | $82.6\pm0.1~\text{a}$ | $56.3\pm0.1~a$      | $39.6 \pm 0.1 \text{ a}$                   |

## UVC Fire Blight trials (2022) – 'Evercrisp'

## No differences in leaf shape & internode length

| Treatment programs (amt./100 gal)                                      | Leaf length<br>(mm)*  | Leaf width<br>(mm)* | Internode length on<br>1st year shoots (%) |
|------------------------------------------------------------------------|-----------------------|---------------------|--------------------------------------------|
| Over both inoculum doses                                               |                       |                     |                                            |
| Untreated                                                              | $82.8 \pm 0.1 a$      | $59.8\pm0.2~a$      | $45.5\pm0.6~a$                             |
| Streptomycin (Firewall 50 WP 0.56kg/Ha)                                | $82.5\pm2.3~\text{a}$ | 59.1 ± 1.3 a        | $44.4\pm2.9~a$                             |
| Aureobasidium pullulans (1.05% buffer protect + 0.15% blossom protect) | $81.7\pm0.6\ a$       | $60.1\pm0.3~a$      | $44.4\pm1.0\ a$                            |
| UVC 200 J/m <sup>2</sup>                                               | $82.1\pm1.0~a$        | $59.9\pm0.1~a$      | $46.9\pm0.9~a$                             |

## UVC Horticultural impacts Trial at Cornell AgriTech

- 'Buckeye Gala', 'Lady in Red', 'Royal Red' Honeycrisp' on M.9-337 planted in 2021
- Orchard sites (High Density Super Spindle)
- Reduced trellis (96") to accommodate UV-C unit for grapes
- Replicated plot panels (RCB): 4 reps w/ five trees



# UVC Horticultural impacts Trial at Cornell AgriTech

- At 80% and 100% bloom
  - Streptomycin (Firewall 50 WP 0.56kg/Ha)
  - Aureobasidium pullulans (1.05% buffer protect + 0.15% blossom protect)
- No inoculation with Ea 273
- Weekly and Bi-weekly UVC 200J/m<sup>2</sup>
- Blossom blight & shoot blight incidence (none)
- Ea populations & leaf shape and shoot and tree growth (possible UVC injury)



## UVC Horticultural impacts (2022) – 'Gala'

## No impact of UV applications on growth and development

| Treatment programs<br>(amt./100 gal)                                            | Log10<br>CFU/mL      | Leaf length<br>(mm)*  | Leaf width<br>(mm)*   | Internode<br>length on<br>1st year<br>shoots (%) | 1 <sup>st</sup> year<br>shoot<br>length (cm) | Canopy<br>Height (cm) |
|---------------------------------------------------------------------------------|----------------------|-----------------------|-----------------------|--------------------------------------------------|----------------------------------------------|-----------------------|
| Untreated                                                                       | $1.5\pm0.0$ a        | $91.3\pm0.3~a$        | $78.7\pm0.1~a$        | $49.9\pm0.6~a$                                   | $22.0\pm0.3~a$                               | $189.6\pm0.5~a$       |
| Streptomycin (Firewall 50 WP 0.56kg/Ha)                                         | $0.0\pm0.0~\text{b}$ | 92.2 ± 1.4 a          | $79.0\pm1.0\ a$       | $47.0\pm0.9~a$                                   | $20.3\pm0.4~\text{a}$                        | 189.7 ± 1.6 a         |
| Aureobasidium<br>pullulans (1.05% buffer<br>protect + 0.15%<br>blossom protect) | $0.0\pm0.0~\text{b}$ | 92.7 ± 0.8 a          | 77.3 ± 0.2 a          | 49.1 ± 1.4 a                                     | $21.4\pm0.3~\text{a}$                        | 189.8 ± 1.4 a         |
| UVC 200 J/m <sup>2</sup> 1/week                                                 | $0.0\pm0.0\ b$       | $93.5\pm0.4~\text{a}$ | $78.4\pm0.3~a$        | $49.3\pm0.7~a$                                   | $21.2\pm0.5~a$                               | $192.4\pm0.7~a$       |
| UVC 200 J/m <sup>2</sup> 2/week                                                 | $0.0\pm0.0\ b$       | $91.2\pm0.2~\text{a}$ | $79.4\pm0.3~\text{a}$ | $49.4\pm0.7~a$                                   | $21.9\pm0.3~a$                               | 190.1 ± 0.3 a         |

## UVC Horticultural impacts (2022) – 'Lady in Red'

## No impact of UV applications on growth and development

| Treatment programs<br>(amt./100 gal)                                            | Log10<br>CFU/mL      | Leaf length<br>(mm)*  | Leaf width<br>(mm)*   | Internode<br>length on<br>1st year<br>shoots (%) | 1 <sup>st</sup> year<br>shoot<br>length (cm) | Canopy<br>Height (cm) |
|---------------------------------------------------------------------------------|----------------------|-----------------------|-----------------------|--------------------------------------------------|----------------------------------------------|-----------------------|
| Untreated                                                                       | $1.5\pm0.0$ a        | $92.5\pm0.6~\text{a}$ | $70.3\pm0.1~a$        | $55.9\pm0.5~\text{a}$                            | $20.1\pm0.2\ a$                              | $180.4\pm0.4~a$       |
| Streptomycin (Firewall 50 WP 0.56kg/Ha)                                         | $0.0\pm0.0~\text{b}$ | 92.6 ± 3.6 a          | $69.1\pm0.2~a$        | $51.3\pm2.3~a$                                   | $20.1\pm0.2~a$                               | 177.5 ± 1.9 a         |
| Aureobasidium<br>pullulans (1.05% buffer<br>protect + 0.15%<br>blossom protect) | $0.0\pm0.0$ b        | 91.7 ± 1.1 a          | 70.7 ± 0.6 a          | 50.9 ± 0.7 a                                     | 20.0 ± 0.3 a                                 | 180.5 ± 0.5 a         |
| UVC 200 J/m <sup>2</sup> 1/week                                                 | $0.0\pm0.0\ b$       | $93.3\pm0.4~\text{a}$ | $69.8\pm0.4~\text{a}$ | $55.4\pm0.6~\text{a}$                            | $20.4\pm0.3~a$                               | $179.3\pm0.4~a$       |
| UVC 200 J/m <sup>2</sup> 2/week                                                 | $0.0\pm0.0\ b$       | 93.1 ± 0.1 a          | $70.2\pm0.2~\text{a}$ | $55.0\pm0.9~\text{a}$                            | 19.9 ± 0.1 a                                 | 180.4 ± 0.4 a         |

## UVC Horticultural impacts (2022) – 'Royal Red Honeycrisp'

## No impact of UV applications on growth and development

| Treatment programs<br>(amt./100 gal)                                            | Log10<br>CFU/mL      | Leaf length<br>(mm)*     | Leaf width<br>(mm)*   | Internode<br>length on<br>1st year<br>shoots (%) | 1 <sup>st</sup> year<br>shoot<br>length (cm) | Canopy<br>Height (cm)  |
|---------------------------------------------------------------------------------|----------------------|--------------------------|-----------------------|--------------------------------------------------|----------------------------------------------|------------------------|
| Untreated                                                                       | $1.5\pm0.0$ a        | $67.7 \pm 0.6 \text{ a}$ | $50.1\pm0.2~a$        | $34.9\pm0.3~a$                                   | $17.5\pm0.2\ a$                              | $160.0\pm0.8~a$        |
| Streptomycin (Firewall 50 WP 0.56kg/Ha)                                         | $0.0\pm0.0~\text{b}$ | 67.6 ± 1.1 a             | $48.6\pm0.7~a$        | $33.7\pm2.2~a$                                   | $18.0\pm0.2~a$                               | 157.8 ± 2.2 a          |
| Aureobasidium<br>pullulans (1.05% buffer<br>protect + 0.15%<br>blossom protect) | $0.0\pm0.0~\text{b}$ | 68.0 ± 0.7 a             | 48.1 ± 0.4 a          | 35.0 ± 2.3 a                                     | 17.1 ± 0.3 a                                 | 160.2 ± 1.3 a          |
| UVC 200 J/m <sup>2</sup> 1/week                                                 | $0.0\pm0.0\;b$       | $67.2\pm0.7~a$           | $50.7\pm0.4~\text{a}$ | $34.7\pm2.9~a$                                   | $17.3\pm0.4~a$                               | $159.3\pm0.8~\text{a}$ |
| UVC 200 J/m <sup>2</sup> 2/week                                                 | $0.0\pm0.0\ b$       | $67.4\pm0.2~a$           | $50.2\pm0.3~\text{a}$ | $34.6\pm0.7~a$                                   | 17.8 ± 0.2 a                                 | 159.8 ± 0.6 a          |

# **UVC summary and takeaways**

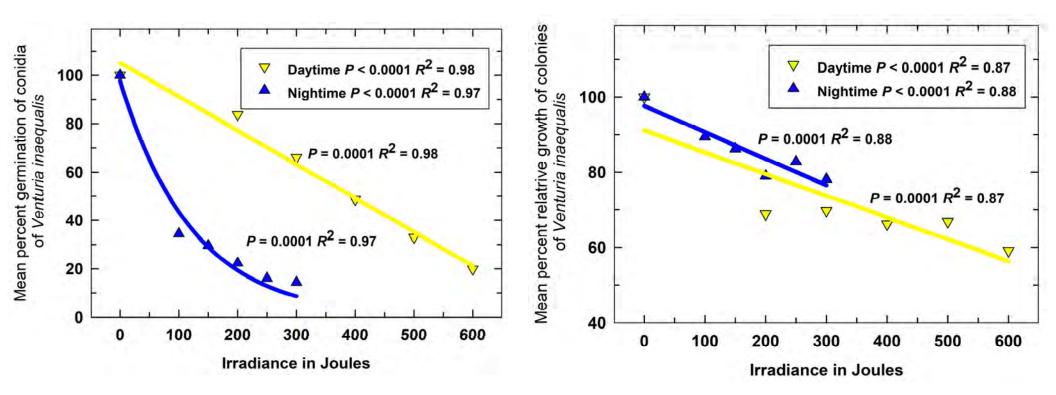
- UVC was effective at 200 J/m<sup>2</sup> against high and low inoculum
- Cold & warm bloom seasons, comparable to conventional (strep) & organic (*Aureobasidium*) standards
- Reduced populations on surface of flowers greatly, no apparent damage, or impacts on the development of young trees
- No residue, potential for frequent use & robotic automation

# Suppression of fungal diseases of apple w/UV light



# Suppression of apple scab using UV light

- UV-C could be used to manage fire blight of apple, a bacterial disease.
- Apple Trees can tolerate season long weekly applications 2 weeks/harvest w/no impacts
- Impacts on other apple diseases such as apple scab?
- Venturia inaequalis is darkly pigmented > needs higher dose
- Orchard inoculum levels lower than that of fire blight






# Suppression of apple scab using UV light

#### **Spore germination**

#### Colony growth after 72 hrs



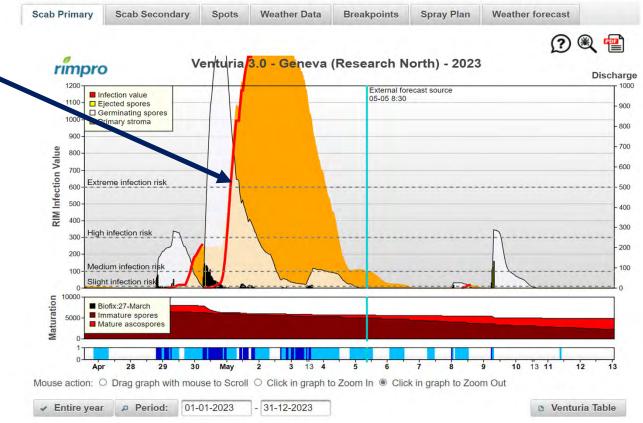
- High Density Super Spindle planting
- 'Evercrisp' on G.41 planted in Aug 2022
- Reduced trellis (96") to accommodate UV-C unit for grapes
- Replicated plot panels (RCB): 4 reps w/ ten trees each



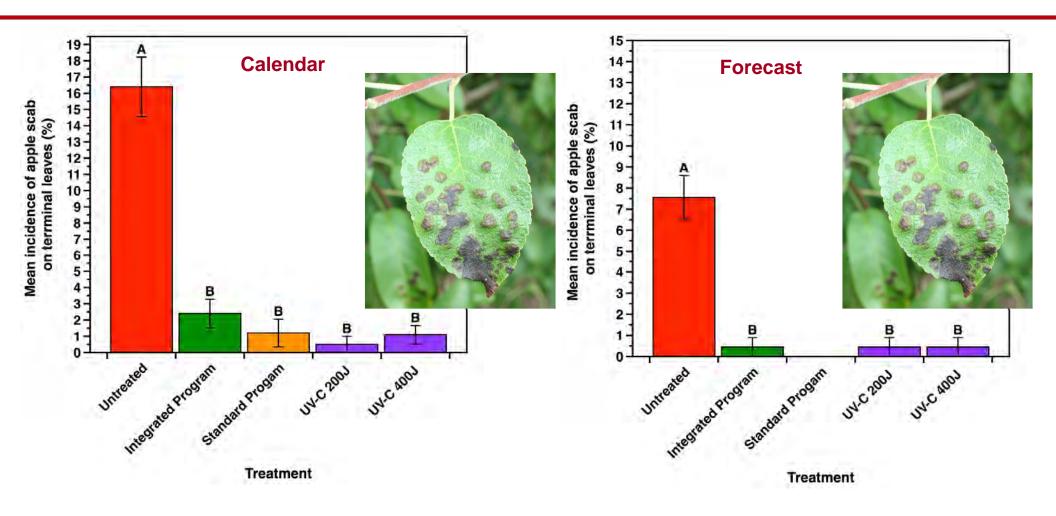
| Treatment | Program                                                                        |                                  |
|-----------|--------------------------------------------------------------------------------|----------------------------------|
| 1         | Untreated Control (no fungicides)                                              | Simplified                       |
| 2         | Manzate Max + Captec rotated<br>biweekly with Aprovia, Flint Extra<br>or Cevya | conventional<br>standard program |
| 3         | <b>Double Nickel</b> rotated biweekly<br>with Aprovia, Flint Extra or Cevya    | Experimental<br>Biopesticide     |
| 4         | UV-C 200 J/m <sup>2</sup> at Night                                             | programs                         |
| 5         | UV-C 400 J/m <sup>2</sup> During the Day                                       | Objective 1: 0                   |
|           |                                                                                | timing (7-10                     |

Dbjective 1: Calendar timing (7-10 days; 8 applications)

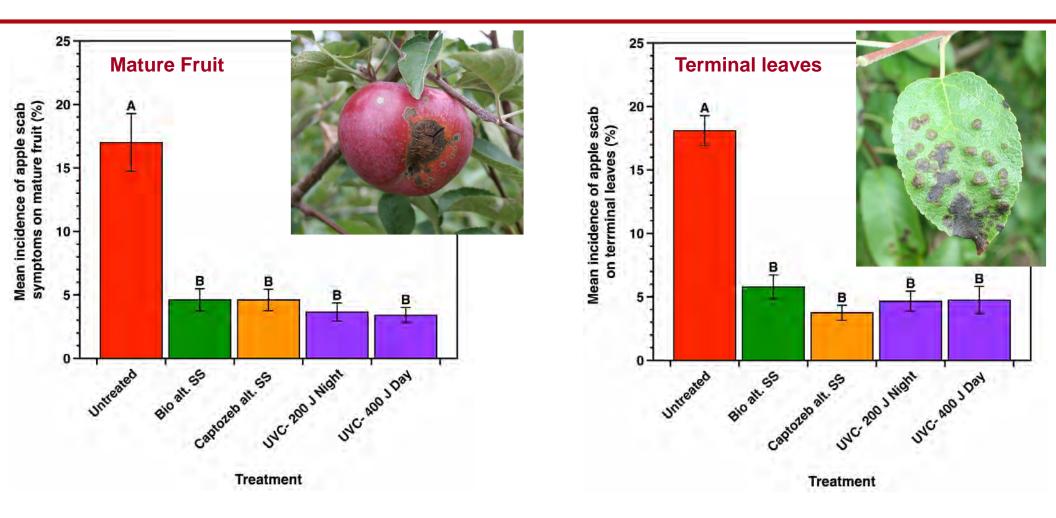
| Treatment | Program                                                                        |                                  |
|-----------|--------------------------------------------------------------------------------|----------------------------------|
| 1         | Untreated Control (no fungicides)                                              | Simplified                       |
| 2         | Manzate Max + Captec rotated<br>biweekly with Aprovia, Flint Extra<br>or Cevya | conventional<br>standard program |
| 3         | <b>Double Nickel</b> rotated biweekly<br>with Aprovia, Flint Extra or Cevya    | Experimental<br>Biopesticide     |
| 4         | UV-C 200 J/m <sup>2</sup> at Night                                             | programs                         |
| 5         | UV-C 400 J/m <sup>2</sup> During the Day                                       | Objective 2:<br>timing NEWA      |


**Objective 2: Forecast** timing NEWA & rimpro germination timing (8 applications)

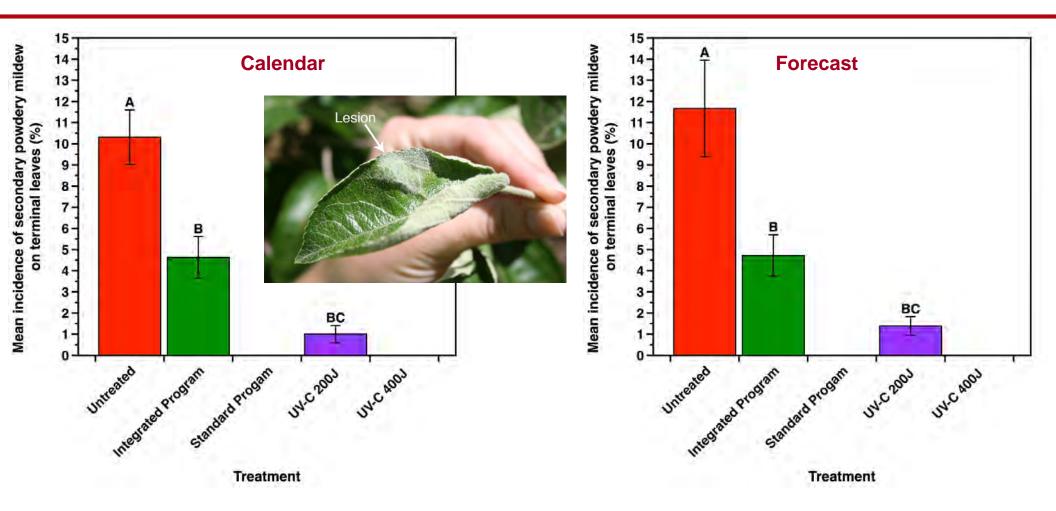
| Treatment | Program                                                                        |                                  |
|-----------|--------------------------------------------------------------------------------|----------------------------------|
| 1         | Untreated Control (no fungicides)                                              | Simplified                       |
| 2         | Manzate Max + Captec rotated<br>biweekly with Aprovia, Flint Extra<br>or Cevya | conventional<br>standard program |
| 3         | <b>Double Nickel</b> rotated biweekly<br>with Aprovia, Flint Extra or Cevya    | Experimental<br>Biopesticide     |
| 4         | UV-C 200 J/m <sup>2</sup> at Night                                             | programs                         |
| 5         | UV-C 400 J/m <sup>2</sup> During the Day                                       | Forecast tim<br>& rimpro ge      |


Forecast timing NEWA & rimpro germination timing (16 applications)

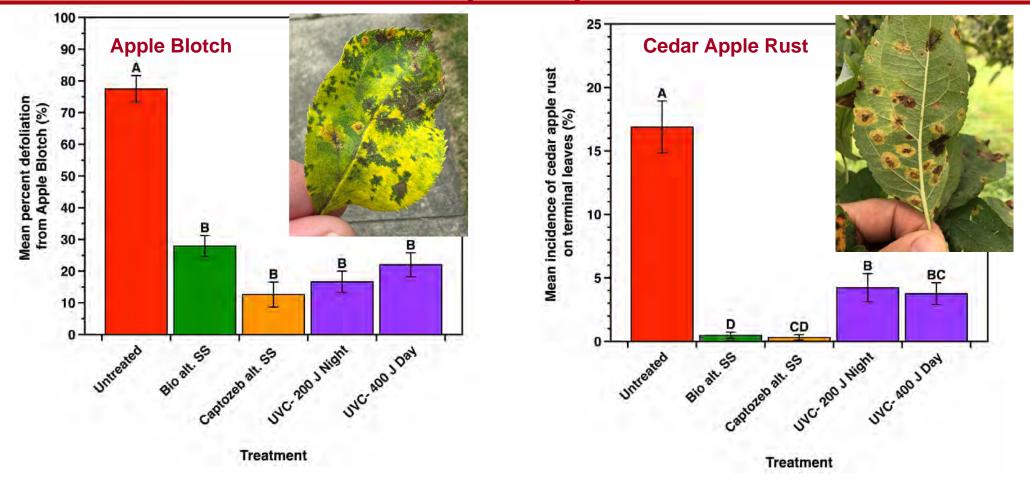
### Objective 2: Forecast timing NEWA & rimpro germination timing







## Apple Scab 'Evercrisp' (2023)




## Apple Scab 'Evercrisp' (2024)



## **Terminal Powdery Mildew 'Evercrisp' (2023)**



## Apple Blotch & Cedar Apple Rust 'Evercrisp' (2024)



## **Summary: Apple Scab**

- 2023: Exceptionally cold dry early spring 2<sup>nd</sup> leaf 'Evercrisp' (establishment)
- 2024: Exceptionally cold wet spring and summer (high pressure)
- High-density planting: excellent aeration
- No difference between calendar or forecast timing in 2023

## Summary: Powdery Mildew, CAR, & Apple Blotch

- Powdery mildew: 2023 cold dry early spring & 2024 cold wet spring and summer (no mildew on 'Evercrisp')
- Cedar apple rust; low pressure > some control
- Apple Blotch High pressure > excellent control

# **UVC summary and takeaways**

- Nightly time UVC was effective at for apple scab and mildew 200 J/m<sup>2</sup>: low inoculum, dry season, establishment years
- UVC 400 or higher J/m<sup>2</sup> may allow for daytime applications
- No appreciable difference between calendar and forecast timing, but for forecast timing less risky
- No impacts on tree vigor or fruit quality even after 16 applications

## How do we move forward

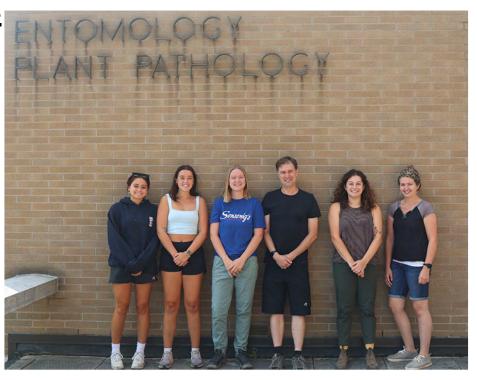
- Consistent performance from a design apple growers can use
- We may need a covered system, but these are incompatible with modern plantings – fruiting wall
- At least 3 years of data, on orchards > 3<sup>rd</sup> leaf, warmer production regions



# **Acknowledgments**

### **Program research** funded by

## Apple Research and Morgan Caraballo **Development Program**


## **Cox Lab Members**

Olivia Herod Isabella Yannuzzi Andrew Painton **Emily Sommer** NY farm viability McKenzie Schessl





New York State Agricultural **Experiment Station** 

