Fire Blight: Streptomycin Resistance Updates and Management Strategies

Kerik D. Cox & Kiersten Bekoscke NYSAES

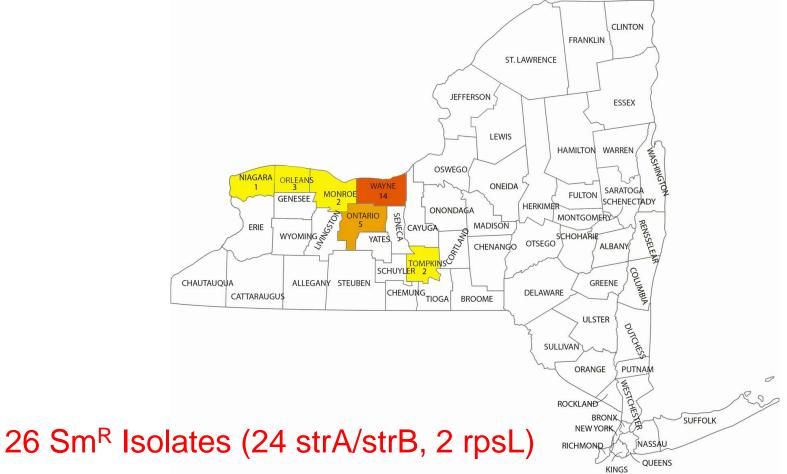
Plant Pathology and Plant-Microbe Biology Section School of Integrative Plant Science Cornell University

Outline

- Streptomycin resistance update
 - History and status
 - Selection & origin
- Managing fire blight
 - Pre & post-season
 - Bloom
 - Post-bloom & Summer

History of streptomycin resistance in NY

- 2002
 - SmR Ea in two neighboring orchards in Wayne
 County: Trees from a nursery with SmR Ea
 - Growers removed the orchards
- 2003-2011
 - Occasional testing of fire blight samples: 2011
 detection of SmR Ea at 4 new locations
- 2012-2014
 - Formal survey: partnered LOFT, CCE ENYCHP, and NYS IPM


Status of streptomycin resistance

- 2012: 175 isolates from 43 commercial sites
- 2013: 320 isolates from 32 commercial sites
- 2014: 800 isolates from 32 commercial sites
 Majority of sampling: Lake Ontario & Hudson
 Valley

Status of streptomycin resistance

 2012-2013: 16 apple production operations had SmR Ea

Trends & implications

- 2014: Lots of Ea, but no SmR Ea
 - Other tree declines present (1/3 samples > BSB, winter injury, & fungal decay blights)
- SmR Ea seems to be restricted to western NY
 - Closest to regions of previous outbreaks
 - Eastern NY appears to be SmR Ea free
- 16 apple production operations had SmR Ea
 Disproportionate ratio of SmS to SmR strains

Trends & implications

- All samples from shoot blight: no catastrophic strep failures w/ widespread losses
 - Numerous reports of FB in RubyFrost, Honeycrisp, & Gala
- In "high risk" areas for strep resistance
 - Streptomycin and oxytet mixes: Seemed to improve overall control of FB in Western NY
 - High risk operations with SmR Ea in 2012 had only SmS in 2013 & 2014

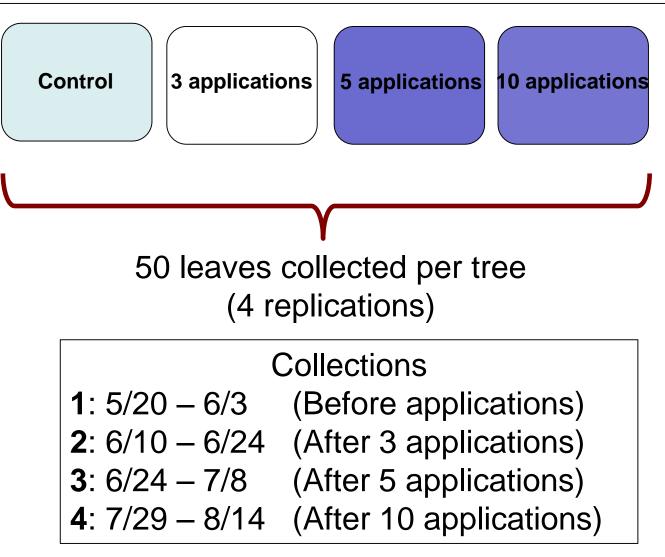
Outline

- Streptomycin resistance update
 - History and status
 - Selection & origin
- Managing fire blight
 - Pre & post-season
 - Bloom
 - Post-bloom & Summer

Selection and Origin

 Effect of varying streptomycin and kasugamycin use on the selection of streptomycin resistant isolates of *E. amylovora* and other epiphytes

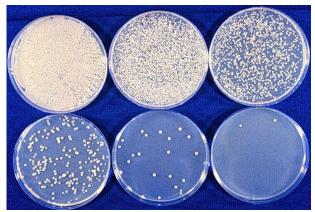
 Use CRISPR strain tracking to better understand the origin of streptomycin resistant strains of *E. amylovora*


- Dogma: applying strep after bloom for shoot blight > strep resistance
- Erwinia amylovora is not a good leaf/shoot epiphyte – Rif+ strains
- The evidence is anecdotal
 - Transfer of strep resistant from epiphytes not proven in the lab or field, yet!
 - More strep sprays = more Sm^R bacteria

- Loper 1991: Strep use recovery of Sm^R E. amylovora
 - Orchards with 2-10 years with 1-5 applications / year correlates with recovery of Sm^R *E. amylovora*
- Yashiro and McManus 2012: Streptomycin use & phyllosphere bacteria
 - No treatments or enumeration of species
 - No correlation > streptomycin use & recovery of Sm^R bacteria
 - High populations of bacteria with intrinsic and stable streptomycin resistance (*Pseudomonas*)

- How do increasing applications of Agri-Mycin 17 or Kasumin 2L effect epiphytic bacteria in the apple phyllosphere?
- Increasing streptomycin applications > increased Sm^R epiphytes
- Increasing kasugamycin applications: <u>No effect on</u> abundance of Sm^R epiphytes

10 yr. old 'Idared': Agrimycin 24 oz/A or Kasumin 2L 64 fl oz/A



Leaf Collection

Sonication

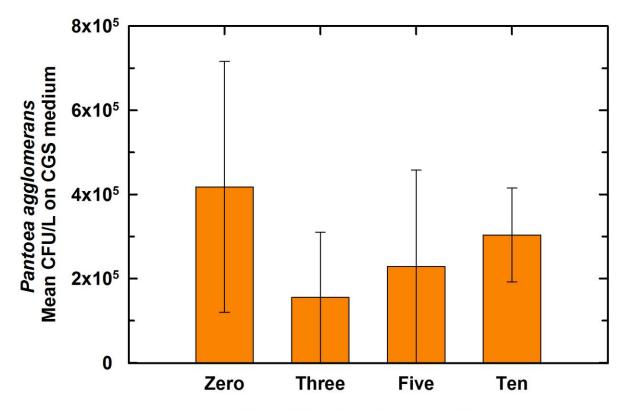
Dilution Plating

Crosse Goodman Media with and without streptomycin and kasugamycin

Identification

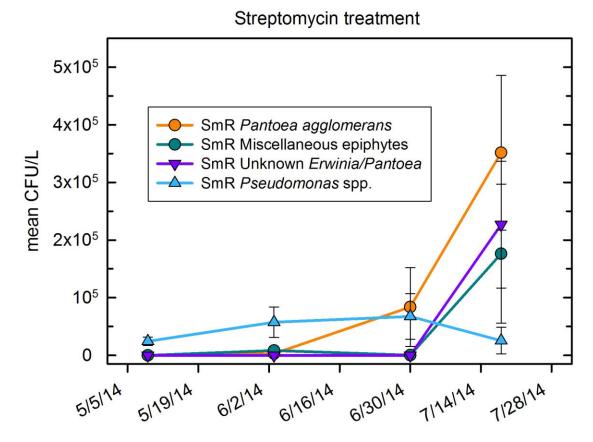
<u>PCR</u>

Pseudomonas sp.: 16S rRNA P. agglomerans: pag2R E. amylovora: pEa29 Strep resistance genes: strA/B

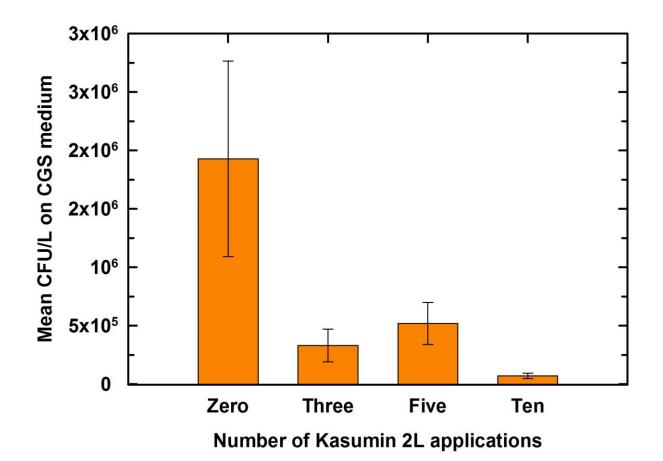

Morphology

Streptomycin application results

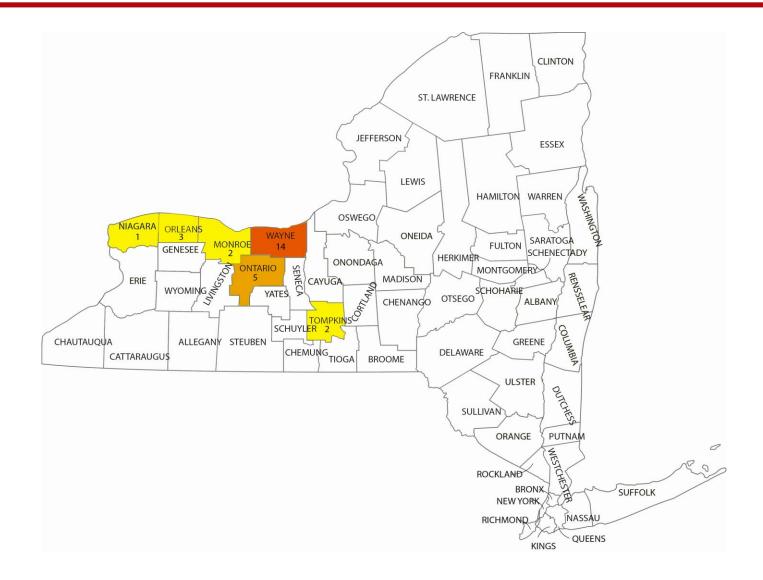
Five different epiphytic bacteria groups


 No significant differences for any epiphytes after 0, 3, 5, and 10 applications

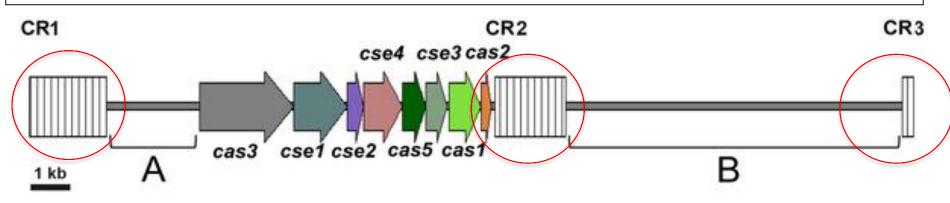
Number of Agr-Mycin 17 applications


Streptomycin application results

- Changes in epiphytes over time
 - Epiphytic E. amylovora nearly absent
 - Higher pops. Sm^R epiphytes at end of season

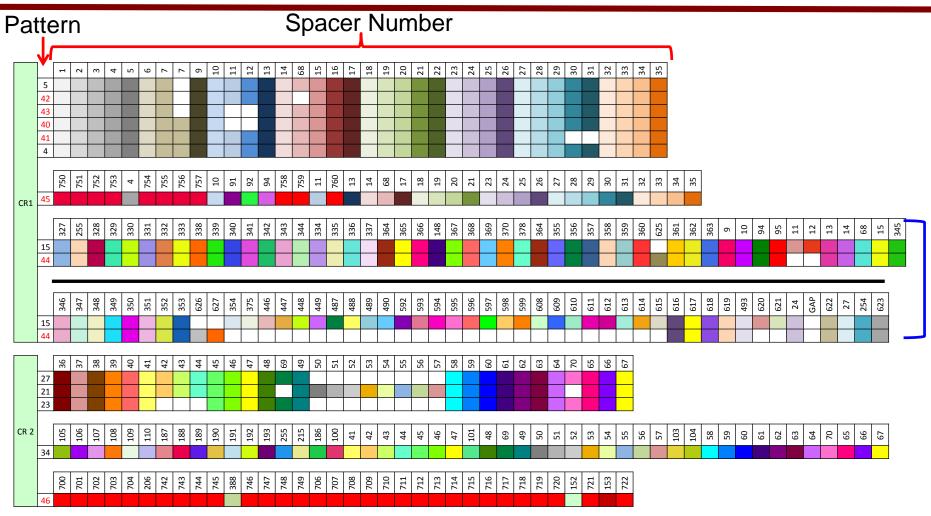

Kasugamycin application results

 All Sm^R epiphytes decrease with increasing Kasumin 2L applications


Selection of resistance summary

- Up to 10 applications of streptomycin did not effect abundance Sm^R *E. amylovora* in field studies
- Increasing applications of streptomycin may increase total Sm^R bacteria
- Increasing kasugamycin applications may decrease total Sm^R bacteria

26 Sm^R Isolates (24 strA/strB, 2 rpsL)

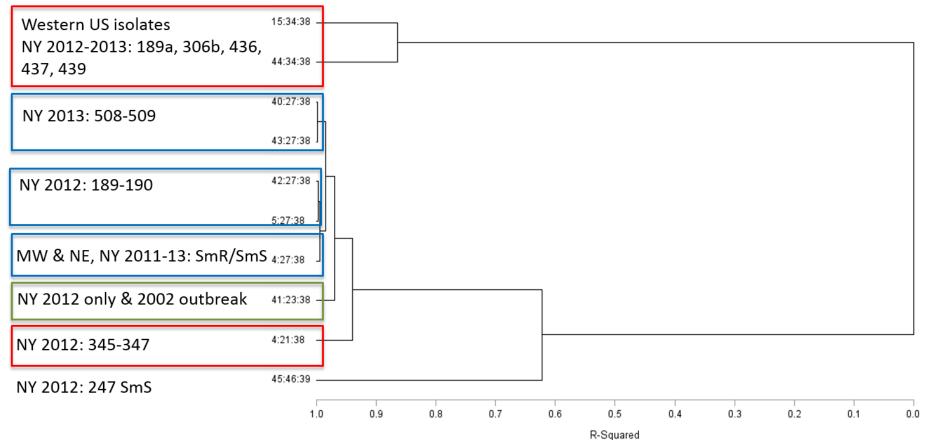

Clustered Regularly Interspaced Palindromic Repeats



McGhee GC, Sundin GW (2012) Erwinia amylovora CRISPR Elements Provide New Tools for Evaluating Strain Diversity and for Microbial Source Tracking. PLoS ONE 7(7): e41706. doi:10.1371/journal.pone.0041706 <u>http://www.plosone.org/article/info:doi/10.1371/journal.pone.0041706</u>

- Found in ~48% of bacteria
- Adaptive immune system: recognition of foreign DNA
- Spacer arrays:
 - Temporal organization and polarity
 - Used to investigate divergence and phylogenetic relationships (*E. amylovora*, *S. enterica, E. coli* etc.)

- McGhee and Sundin (2012): Distinctly group 85 isolates based on region of origin (North America (east and west), Europe, New Zealand, and Middle east)
- Phylogenetic relationships between Sm^R and Sm^S Michigan isolates to investigate parental strains of new streptomycin resistant isolates
- Hypothesis: CRISPR spacer array pattern analysis will allow us to form relationships between NY isolates and other isolates collected world-wide.



Malus

Rubus

Profile

- Green: Original 2002 introduction & Blue originates from those
- Red: arose on farm or introduced with Sm^S isolates

Origins of resistance summary

- Many unique CRISPR patterns/spacers found in NY: Diversity
- Many Sm^R NY isolates have the same CRISPR profile as the original introduction isolates NY1 & NY2: Failure of eradication and spread of resistance or unknown introductions in 2002
- CRISPR profile for some Sm^R isolates is found in Sm^S isolates at same site: Resistance development in NY or double introduction?
- Western grouping isolates and presence of rpsL mutation: New introduction?

Outline

- Streptomycin resistance update
 - History and status
 - Origin & selection
- Managing fire blight
 - Pre & post-season
 - Bloom
 - Post-bloom & Summer

- Post season: Clean up inoculum to reduce spread within and between trees
 - Prune out strikes and small cankers:

- Pre season: Clean up inoculum to reduce spread within and between trees
 - Scout and prune out oozing cankers:
 - Large depressed discolored cracked bark: main scaffolds can't prune
 - Small blossom & shoot infections, summer pruning cuts: numerous & hard to see/find

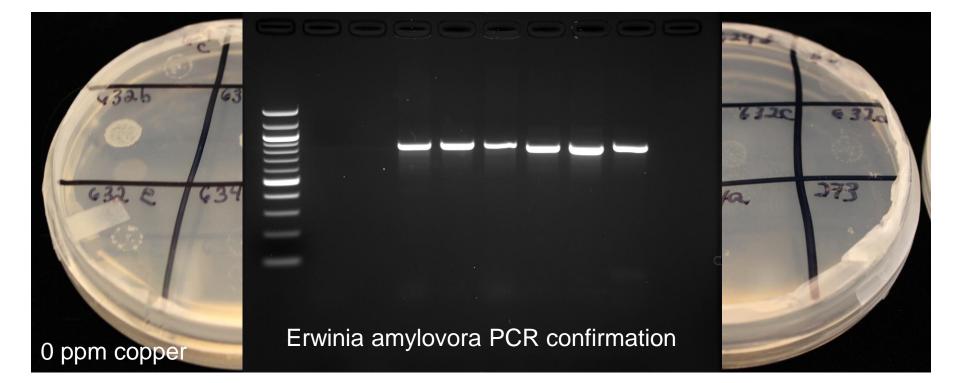
- Pre season
 - Apply full rate of copper at silver/green tip
 - Warm weather causes cankers to ooze > fire flight inoculum increases greatly
- Bloom (had or have history of fire blight)
 - Watch for CCE alerts and disease model forecasts for fire blight infection periods (NEWA & MaryBlyt 7.1)
 - Since SmR Ea has not been confirmed in eastern NY, use highest rate of strep for each forecast infection

- Bloom
 - Concerned about effectiveness of strep, use highest rate of Kasumin 2L at the 2nd or 3rd forecast infection
- Bloom (Organic with susceptible varieties)
 - No antibiotics (Oct 20, 2014), Highest rate of Double Nickel with Cueva, Badge X2 with hydrated lime, Serenade Optimum, or Blossom Protect
 - Run MaryBlyt 7.1 with 60-75% efficiency with forecast data to plan spray interval – use local data

- Additional bactericide considerations
 - Streptomycin: locally systemic & Oxytetracycline
 & Kasugamycin protectants
- Post-Bloom & Summer: Copper (protectant)
 - Can cause fruit russet: not a concern in nursery or during establishment - survival
 - Apply with adequate drying time
 - Protectant: reduces surface bacteria
 - Terminals can outgrow protective residues of copper
 - Low rate fixed copper program: 7-10 day schedule until terminal bud set

- Post-Bloom & Summer: Apogee
 - Retards vigorous shoot growth in young trees & is best protection against shoot blight
 - Make two applications: 6-12 oz/100 gal (3-6 oz/100 gal for tree <5 years) beginning at 1-3" shoot growth & 14-21 days later

- Post-Bloom & Summer: Pruning newly developed strikes
 - -Remove as soon as noticed
 - -Prune on a cool dry day
 - –Cut into last season's growth At least 12" into healthy tissue
 - Young trees: if 12" is into the main scaffold
 remove/replant


Acknowledgments

- State, federal, and institutional funds appropriated to the New York State Agricultural Experiment Station
- Funding support by the NYS Apple Research and Development Program
- New York State Department of Agriculture & Markets -Specialty Crop Block Grant
- Summer Crew!

Questions?

