### The Continuing Quest for optimal Harvest Management and Storage of Apples'

Chris Watkins Horticulture Section School of Integrative Plant Science Cornell University Ithaca

### The collective contributions of

Franny Doerflinger Yosef Al-Shoffe Jackie Nock Shao Xingfeng Kazem Arzani

#### With funding from

- NY Apple Research and Development Program
- USDA-NIFA
- NYFVI
- AgroFresh

#### <u>Colleagues</u>

- Peter Toivonen
- Jennifer DeEll
- Ines Hanrahan
- 'Mimmo' Costa

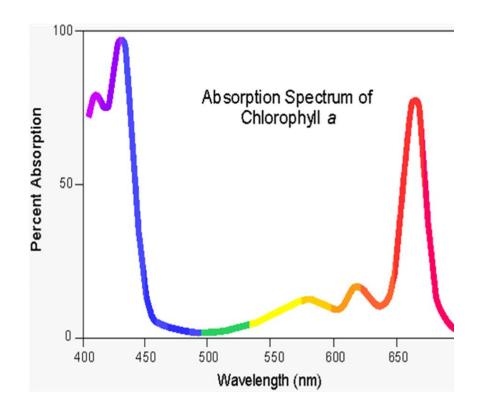
Thanks for the many growers and storage operators who contribute fruit for our research

## Three topics today

#### DA Meter

#### Honeycrisp storage

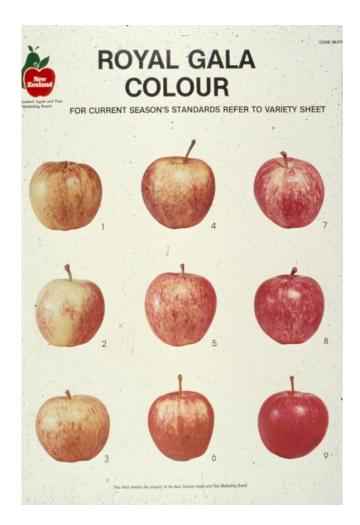
#### Dynamic Controlled Atmosphere Storage


## 1. Delta Absorbance (DA) meter

Hand held non-destructive measurement Developed using vis/NIR spectroscopy



# Absorbance measurement principles

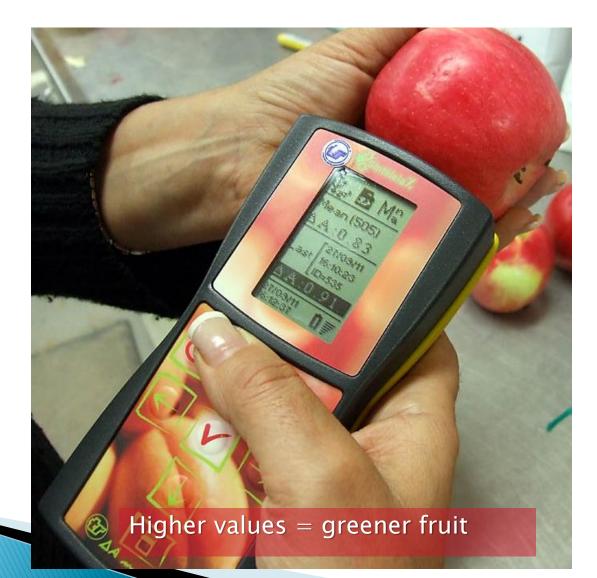

- Chlorophyll *a* peaks at <u>~ 660 nm</u>
- I<sub>AD</sub> measures Chlorophyll *a* in the peel
  I<sub>AD</sub> = Abs (670 nm) Abs (720 nm)

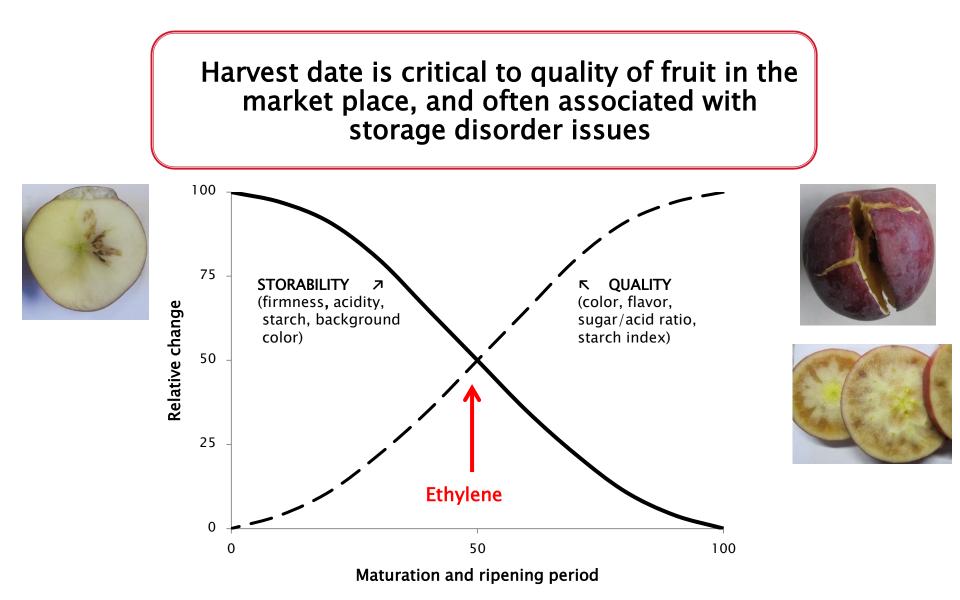


ttn://www.umich.edu/~chem125/softchalk/Exp2\_Final\_2/Exp2\_Final\_2\_print.html

#### Essentially an electronic color chart that provides an index representing Chlorophyll a concentrations







But DA meter is not limited by red coloration of fruit

# Relationships between I<sub>AD</sub> values and chlorophyll a

| Cultivar   | R <sup>2</sup> |
|------------|----------------|
| NY-1       | 0.797          |
| NY-2       | 0.756          |
| Cortland   | 0.818          |
| Fuji       | 0.732          |
| Honeycrisp | 0.817          |
| Jonagold   | 0.481          |
| Mutsu      | 0.678          |
| McIntosh   | 0.671          |
| RedCort    | 0.633          |

## DA meter provides readings in the range of 0 to 3.0 for apple fruit





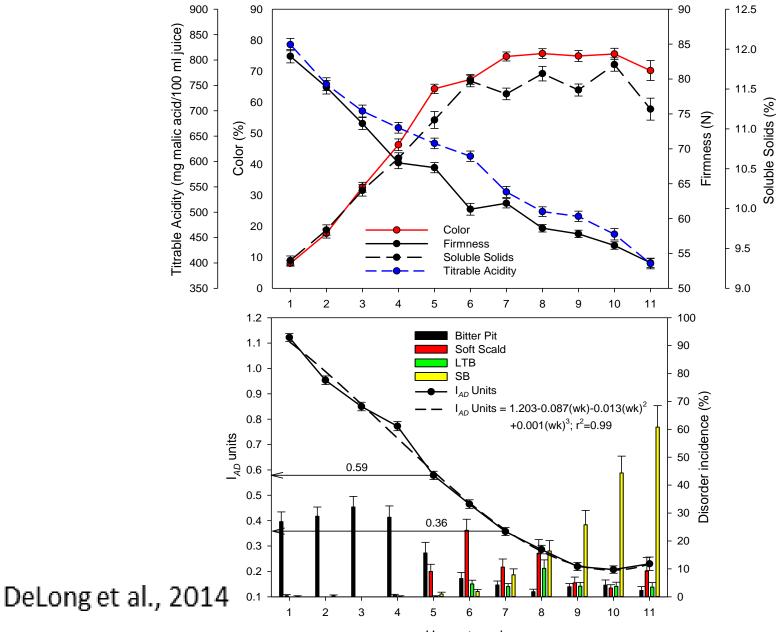
#### Current tools to assess "Maturity" (Harvest) indices

#### MATURITY INDICES

- Internal ethylene concentration (IEC)
- Starch pattern index (SPI)

#### Where does the DA meter fit in?

#### **QUALITY INDICES**


- Firmness
- Soluble solids concentration
- Acidity
- Red coloration
- (background color/ground color)

#### Honeycrisp DA meter model steps:

- ) Measure fruit quality attributes 'at harvest' [including DA meter readings $(I_{AD})$ ];
- ii) Store 38°F for 3–4 months;
- iii) Assess disorder incidence after removal;
- Optimal harvest window = period having high quality attributes (at harvest),

and fewest disorders (post-harvest);

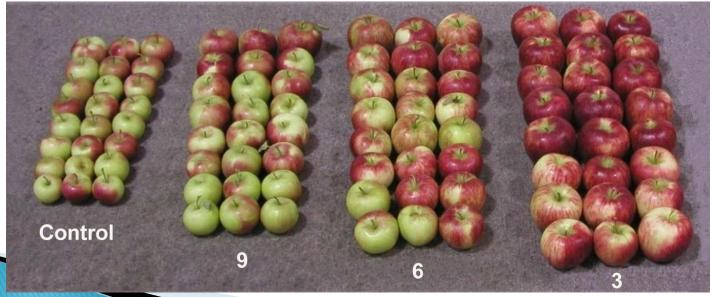
 Optimal harvest window delineated in DA meter units. (Note: usually a 2-week period)



2010-2012 Honeycrisp Quality, I<sub>AD</sub> & Disorder Data

Harvest weeks

Honeycrisp Harvest Maturity conclusions for Nova Scotia (John DeLong et al.)


DA meter model message:

As the Honeycrisp reading:

- i)  $\leq 0.60 \implies \text{begin harvest}$
- i) Between 0.60 and 0.35 → good for longterm storage
- ii) <0.35 → sell first. No long-term storage

#### Ignored admonitions from DeLong et al. (2014)

- Develop for each cultivar
- Regionally based



Fruit per cm<sup>-2</sup> TCSA

#### Why region is important

- Excellent color development in Nova Scotia
- Different maturity profiles allowing more concentrated harvest dates
  - 3-4 harvests not uncommon in NY
- Different disorder development profiles
  - Stippen (on tree pit appears more problematic in NY)
  - Depending on region and growing season we have much greater concern about soft scald and soggy breakdown

#### Average maturity indices

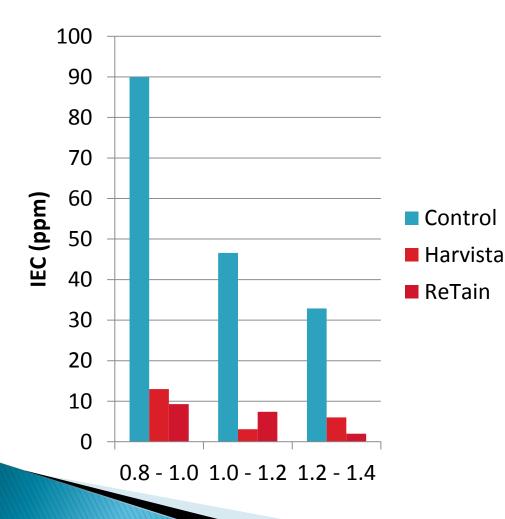
| Growing region | IEC<br>(ppm) | SPI | DA meter<br>reading |
|----------------|--------------|-----|---------------------|
|                |              |     |                     |
| Champlain      | 8            | 6.6 | 0.71                |
| Hudson Valley  | 11           | 7.0 | 0.65                |
| Western NY     | 14           | 7.6 | 0.51                |
| ΡΑ             | 23           | 7.7 | 0.311               |

# Honeycrisp separation by DA reading



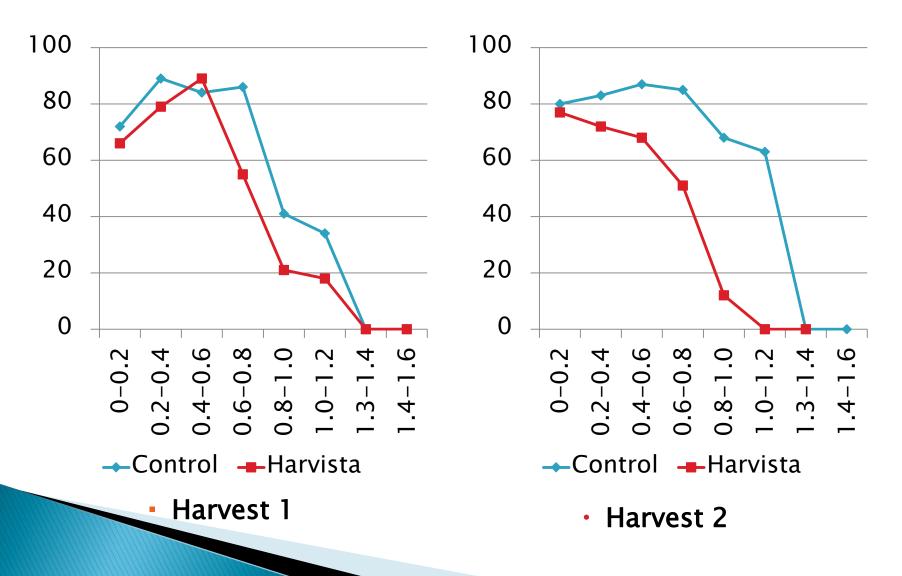


# Honeycrisp separation by DA reading






#### Summary:


- Generally good correlations between I<sub>AD</sub> values and chlorophyll concentrations, but exceptions exist.
- Depending on cultivar (e.g. 'RedCort'), relationships between I<sub>AD</sub> values and IEC and starch indices are good. Suggests that in some cases might be useful non-destructive measure if relationships apply across orchards and growing regions.
- But just chlorophyll is being measured effects of N, position of fruit on tree, PGRs

#### I<sub>AD</sub> values and internal ethylene concentrations (ppm) – Delicious



- Relationships between and I<sub>AD</sub> values good for untreated fruit
  - lower I<sub>AD</sub> values = riper fruit and higher IEC.
- Harvista and ReTain trts result in loss of relationship within an given I<sub>AD</sub> value.

## Soft scald (%) in Honeycrisp separated at harvest by DA meter readings



#### Field use?



Courtesy of Ines Hanrahan,

Washington Tree Fruit Research Commission



Courtesy of Peter Toivonen,

Agriculture and Food Canada, BC

#### Conclusions

- Correlations of I<sub>AD</sub> values with other harvest indices are present, but variable, and depend on cultivar.
  - 'I<sub>AD</sub> tells you about how much chlorophyll is in the peel of the apple – nothing more'
- Relationship between I<sub>AD</sub> values at harvest and disorders may be affected by preharvest factors such as PGRs.
- Overall unlikely to replace standard harvest indices, but rather supplement, although future potential for precision harvest if it can be made reliable in the field.
- Big question for how a grower might use such a meter.

## 2. Honeycrisp storage





#### Focus

- Effects of conditioning
- Can we avoid conditioning? (regional)
- CA storage

Effects of conditioning on bitter pit and soft scald of fruit stored at 33°F or 38°F (2013/2014)

- Honeycrisp apples from WNY (2 orchards) and PA (1 orchard)
- Fruit untreated or conditioned at 50°F before storage at 33°F or 38°F
- Stored for 20 weeks plus 7 days at 68°F

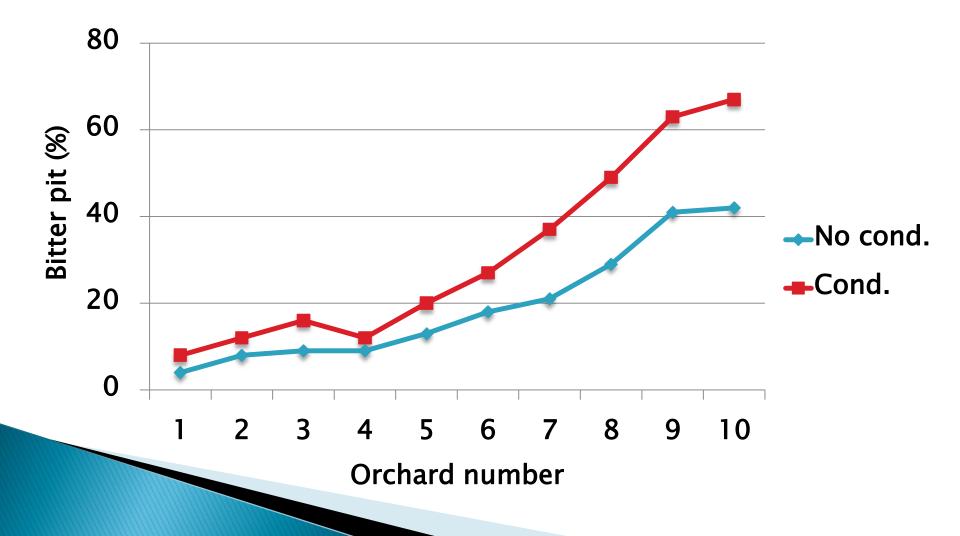
#### Effect of conditioning Soft scald (%)

|                       | WNY-1 | WNY-2 | ΡΑ        |
|-----------------------|-------|-------|-----------|
| 33F                   | 22a   | 28a   | 8a        |
| 33F +<br>conditioning | 3b    | 3b    | 6a        |
| 38F                   | 0.3b  | Ob    | <b>0b</b> |
| 38F +<br>conditioning | Ob    | Ob    | <b>0b</b> |

#### Effect of conditioning Bitter pit (%)

|                       | WNY-1 | WNY-2     | ΡΑ  |
|-----------------------|-------|-----------|-----|
| 33F                   | 5c    | 2b        | 4b  |
| 33F +<br>conditioning | 8bc   | 2b        | 24a |
| 38F                   | 13ab  | <b>3b</b> | 5b  |
| 38F +<br>conditioning | 20a   | 5a        | 28a |

- ▶ 38F is the safe storage temperature for HC
- Conditioning is a problem
  - Can increase bitter pit development
  - Annoying from management perspective


Effects of conditioning on bitter pit and soft scald of fruit stored at <u>38°F</u> (2014/2015)

- Honeycrisp apples from HV (3 orchards), WNY (2 orchards), Champlain (3 orchards) and PA (2 orchards)
- Fruit untreated or conditioned at 50°F before storage at 38°F
- Storage for 20 weeks plus 7 days at 68°F
- Results today are based on 10 weeks evaluations during cold storage

# Effects of conditioning on bitter pit incidence (%) at 10 weeks [2014/15]

|         | 38°F | 50°F + 38°F | % Increase over<br>'no<br>conditioning' |  |
|---------|------|-------------|-----------------------------------------|--|
| PA1     | 21   | 37          | 76                                      |  |
| PA2     | 9    | 16          | 78                                      |  |
| HV1     | 42   | 67          | 60                                      |  |
| HV2     | 29   | 49          | 69                                      |  |
| HV3     | 13   | 20          | 54                                      |  |
| WNY1    | 8    | 12          | 50                                      |  |
| WNY2    | 18   | 27          | 50                                      |  |
| CH1     | 41   | 63          | 54                                      |  |
| CH2     | 4    | 8           | 50                                      |  |
| CH3     | 9    | 12          | 33                                      |  |
| Average | 19   | 31          | 63                                      |  |

# Effect of conditioning on bitter pit incidence (%) at 10 weeks [2014/15]

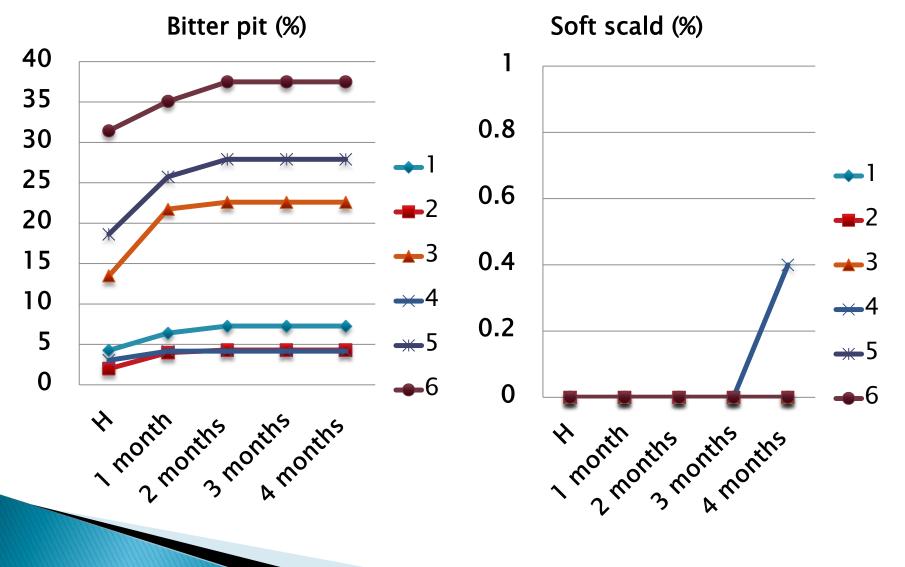


#### Effects of conditioning on soft scald incidence (%) at 10 weeks [2014/15]

|         | 38°F | 50°F + 38°F |
|---------|------|-------------|
| PA1     | 0.3  | 0           |
| PA2     | 0    | 0           |
| HV1     | 0    | 0           |
| HV2     | 9    | 0           |
| HV3     | 1    | 0           |
| WNY1    | 3    | 0           |
| WNY2    | 0    | 0           |
| CH1     | 2    | 0           |
| CH2     | 4    | 0           |
| CH3     | 0.3  | 0           |
| Average | 2    | 0           |

#### Sub-summary

- Conditioning ALWAYS increases losses due to bitter pit
  - Only control factor is in the orchard
  - Less pit potential at harvest = less loss to pit after storage


\_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_

Interested in timing of disorder incidence

# The dynamics of bitter pit and soft scald development (2013/2014)

- Fruit from 6 HV orchard blocks and 12 western NY orchard blocks
- Stored at 38°F without conditioning
- Bitter pit and soft scald development assessed on stored fruit at monthly intervals for 4 months

#### Hudson Valley



#### Western NY Soft scald (%) Bitter pit (%) 5 30 25 4 20 3 -8 15 2 **\_\_**9 10 <u>→10</u> 1 5 <del>×</del>11 0 0 **—**12 H 2 months nonths nonths Honth nonths nonths nonths

⊷7

-8

-9

<u>→10</u>

<del>×</del>11

**—**12

#### Take home messages

- Variation among orchards recurrent theme
- Storage of Honeycrisp at 33°F is a high risk endeavor regardless of conditioning (for long storage periods)
- Conditioning of fruit consistently reduces soft scald development but results in higher bitter pit development
- Lower bitter pit potential results in lower losses due to conditioning
- Negligible soft scald at 38°F for short term storage

- Soft scald development risk is HIGH in the Champlain, low in Hudson Valley, while WNY is more variable.
- Not conditioning in Champlain and WNY is a high risk activity! Every year is different!!!
- In HV may be possible to use low storage temperatures and avoid conditioning if storage periods are short (1-2 months)
- Ideal would be to have prediction test available (β testing this season), also testing ethanol, but you should sample.

## Controlled atmosphere (CA) storage



#### Untrt vs SF (air) vs CA - 6 months

|                     | <u>UNTRT</u> | <u>1–MCP</u> |
|---------------------|--------------|--------------|
| Firmness (lb–<br>f) | 15.5         | 15.5         |
| SSC<br>(%)          | 12.0         | 12.4*        |
| TA<br>(%)           | 0.228        | 0.267***     |

#### Untrt vs SF (air) vs CA - 6 months

|                     | <u>UNTRT</u> | <u>1–MCP</u> | CA       |
|---------------------|--------------|--------------|----------|
| Firmness (lb–<br>f) | 15.5         | 15.5         | 15.5     |
| SSC<br>(%)          | 12.0         | 12.4*        | 12.8***  |
| TA<br>(%)           | 0.228        | 0.267***     | 0.297*** |
|                     |              |              |          |

## Control of CO<sub>2</sub> injury

- Diphenylamine (DPA)
- Delayed CA
- High temperature conditioning (Randy Beaudry, MSU)



Table 1. % Internal CO<sub>2</sub> injury in 'Honeycrisp' apples from 5 WNY orchards after CA (3% oxygen/3% carbon dioxide) storage (2013).

|        | % Internal CO <sub>2</sub> injury |          |          |          | *        |  |
|--------|-----------------------------------|----------|----------|----------|----------|--|
|        | Orchard #                         |          |          |          |          |  |
| delay  | 1                                 | <u>2</u> | <u>3</u> | <u>4</u> | <u>5</u> |  |
| 1 week | 15                                | 10       | 2        | 2        | 32       |  |
| 3 week | 10                                | 1        | 0        | 0        | 10       |  |
| 5 week | 1                                 | 2        | 0        | 0        | 4        |  |

#### CA experiments 2014 harvest objective to control CO<sub>2</sub> injury by delaying CA

- Fruit from 3 orchard blocks in each of Champlain and Western NY
- Fruit treated on day 1 or day 6 during conditioning.
- CA (3% oxygen with 1.5% or 3% carbon dioxide) applied after 0 or 4 weeks.

Assessment after 6 months of CA storage

Thank you for your ongoing support



