How to fill in the Priorities Survey

(Please select the top 5 in each category and give	2015
each a unique rank from 1 to 5; 1 = highest)	Ranking
General IPM Issues	
Pesticide resistance	
Invasive/exotic species	
Weather/information delivery systems	
Cost reduction	
Pollinator conservation	
Organic production	
Pheromone technology	
OP/carbamate replacements	
Abandoned orchard impact	
IFP certification	
Groundwater monitoring	

How to fill in the Priorities Survey

(Please select the top 5 in each category and give	2015
each a unique rank from 1 to 5; 1 = highest)	Ranking
General IPM Issues	
Pesticide resistance	
Invasive/exotic species	2
Weather/information delivery systems	4
Cost reduction	3
Pollinator conservation	
Organic production	
Pheromone technology	5
OP/carbamate replacements	1
Abandoned orchard impact	
IFP certification	
Groundwater monitoring	

How to fill in the Priorities Survey

(Please select the top 5 in each category and give	2015
each a unique rank from 1 to 5; 1 = highest)	Ranking
General IPM Issues	
Pesticide resistance	
Invasive/exotic species	2
Weather/information delivery systems	4
Cost reduction	
Pollinator conservation	
Organic production	
Pheromone technology	5
OP/carbamate replacements	1
Abandoned orchard impact	
IFP certification	
Groundwater monitoring	
(write in) How to get trap stickum out of your hair	3

How <u>not</u> to fill in the Priorities Survey

(Please select the top 5 in each category and give	2015
each a unique rank from 1 to 5; 1 = highest)	Ranking
General IPM Issues	
Pesticide resistance	1
Invasive/exotic species	1
Weather/information delivery systems	1
Cost reduction	1
Pollinator conservation	1
Organic production	1
Pheromone technology	1
OP/carbamate replacements	1
Abandoned orchard impact	1
IFP certification	1
Groundwater monitoring	1

How <u>not</u> to fill in the Priorities Survey

(Please select the top 5 in each category and give	2015
each a unique rank from 1 to 5; 1 = highest)	Ranking
General IPM Issues	
Pesticide resistance	2
Invasive/exotic species	2
Weather/information delivery systems	1
Cost reduction	3
Pollinator conservation	2
Organic production	1
Pheromone technology	1
OP/carbamate replacements	2
Abandoned orchard impact	4
IFP certification	4
Groundwater monitoring	5

How <u>not</u> to fill in the Priorities Survey

(Please select the top 5 in each category and give	2015
each a unique rank from 1 to 5; 1 = highest)	Ranking
General IPM Issues	
Pesticide resistance	8
Invasive/exotic species	2
Weather/information delivery systems	4
Cost reduction	3
Pollinator conservation	7
Organic production	10
Pheromone technology	5
OP/carbamate replacements	1
Abandoned orchard impact	6
IFP certification	9
Groundwater monitoring	11

Progress in Development of Fixed Spraying Systems in High-Density Apples and Berries

Arthur Agnello & Andrew Landers Dept. of Entomology Cornell University New York State Agricultural Experiment Station Geneva, NY USA

Conventional approach to pesticide application in apple orchards

Use of airblast sprayers can be inefficient and inaccurate • spray drift

- off-target contamination
- ineffective pest control

Study Site for Fixed Spray Evaluation, 2007

Fowler Farms Wolcott, NY

- Mature 'Gala' block, 0.9 A
- "Super Spindle" planting system
- Row spacing 10 ft
- Tree spacing 2 ft

³/₄-inch polyethylene tubing

- Minimal number of branch points and reductions in tubing diameter to avoid
 excessive pressure loss between pump and nozzles.
- Nozzles attached directly to line within row

Lateral Line Support System

- Supply incorporated lines into tree support system
- Dual (high and low) lateral lines, sprays made from row center outwards
- No air-assist, limited canopy penetration; intended for use in highdensity plantings only

Supply Manifold Support System

trellis support post 2-inch PVC Schedule 80 pipe

Supply line mounted overhead, using rigid PVC pipe attached to the trellis support posts

Pesticide Injection

Mobile Pumping Unit

- Could have used airblast sprayer to pump the solution, but most sprayer pumps provide ~35 gal/min; need 3x that capacity
- Mobile unit built with tank and a suitable pump; transported to a central injection site

Apple Scab

Current System Modifications and Redesigns "Solid Set Canopy Delivery System" (SSCDS) (Grant with Michigan State Univ. and Washington State Univ.)

- Pressure-compensating valves and leak-prevention nozzles installed to delay and synchronize emission of sprays at a target pressure after lines have been fully charged
- Supplied each emitter with just enough spray material to adequately cover tree canopy surfaces below it
- Use compressed air to recirculate and re-capture excess spray solution, effect spray delivery, and purge residue from lines
- Spray material is delivered sequentially to small section of orchard at a time (1-2 rows; 15-30 sec each) from a pre-mixed tank, through irrigation lines fixed above each row

New York Design of Solid-Set Canopy Delivery System

Spray Application Process

- Pump used to fill all tubes and reservoirs from tank containing mixed spray materials
- Compressed air clears main supply tubes, returns excess material to spray tank
- Compressed air at a higher pressure opens check valves, all emitters spray out pesticide solution (15 sec for ~70 gpa)

Pipe manifold with valves, input ports for pump & compressor

Buried PVC pipes/supply lines

reservoirs

reservoir

check valve

microsprinkler

Michigan State Univ Trials (Larry Gut)

Comparing SSCDS and Airblast Sprayer Coverage

- Amount of AI deposited
- Percent surface area coverage
- Spatial distribution within the canopy
- Parallel comparison of spray deposition data to insect bioassays

Michigan State Univ Trials (John Wise, Ron Perry)

Amount of AI deposited

Michigan State Univ Trials (John Wise, Ron Perry)

% Surface Area Covered

Washington State Univ Trials (Jay Brunner)

% Surface Area Covered

MSU and WSU Trials (Gut & Brunner)

Leafroller Mortality MSU WSU

Progress

- Operational SSCD systems have been developed and tested
- Total amount of material applied to canopy of tree using SSCDS as good as with airblast sprayer
- Coverage on upper leaf surface good variable on underside
- Efficacy of pest management inputs using SSCDS equivalent to or better than that achieved using airblast sprayer
- SSCDS shows potential for improving efficacy of sprayable pheromone

Potential Benefits

- Lower labor requirements, equipment upkeep possibly cheaper; potential for a greater degree of automation or precision operation
- Ability to spray in orchard conditions where tractor operation may not be optimal (e.g., early season, low-light hours; highly sloping blocks)
- Short application time:
 - take advantage of narrow application windows
 - multiple sprays and re-sprays much easier; can use short-residual (least-toxic) materials, sprayable pheromones; rescue treatments
- Minimal drift and off-target deposition; quieter operation; less impact on neighbors, adjacent property or roads
- Readily adaptable to use for irrigation, frost protection, sunburn protection

A Fixed Spray System for Spotted Wing Drosophila Management in High Tunnel Raspberries

Fixed Spray System for High Tunnels

Drop tubes spaced every 5 ft
Rows ~100-120 ft long

connected to PVC manifold Individual gauge and valve for each line

Fixed Spray System for High Tunnels

- Rears Nifty Pul Tank greenhouse sprayer
- 3 HP motor
- 25 gal tank

- Netafim DAN 7000 series microsprinklers
- 8-mm orifice; flat circular pattern spreader (6 ft diam spray profile)
- 20 psi check valve

High Tunnel Trial Sites

- Research raspberry planting, NYSAES, Geneva
- Research blackberry planting, Cornell, Ithaca
- Commercial raspberry farm, Stephentown
- Sprays applied weekly:
 - 7/29 Delegate 6 oz/A
 - 8/5 Assail 5 oz/A
 - 8/12 Assail 5 oz/A
 - 8/19 Delegate 3.5 oz/A
 - 8/26 Delegate 3.5 oz/A
 - 9/2 Assail 5 oz/A
 - 9/9 Assail 5 oz/A
 - 9/16 Delegate 3.5 oz/A
 - 9/23 Delegate 3 oz/A
- Sugar 2 lb/100 gal added as feeding stimulant to all sprays
- Identical sprays made in check high tunnel plantings using backpack sprayer

SWD Population & Infestation Assessment

Mean total SWD/g of

- Early August: Weekly samples taken of maturing fruit, held at room temp to rear out any larvae to adult stage²
 - 8-13 samples collected per site
 - 10-20 berries (50-100 g total)
 - both Fixed Spray planting and Check planting sampled
- Stephentown (ripe fruit picked daily): no difference in # of adults from different treatments
- Geneva & Ithaca: ~2.5X as many flies from Fixed Spray as from Check plantings
 - fruit not harvested as frequently
 - blackberry planting much more vigorous; coverage not as good

Future Areas for Possible Improvement

- Shorten spray duration times
 - System could be running too long and washing off active ingredient
- Assess spray coverage on fruit by using fluorescent tracer dye
- Examine possibility of direct pesticide injection (dosing pump) rather than mixing pesticide solutions in the tank
- Quantify pesticide residue levels on the fruit, or conduct bioassays using lab-reared flies to see how efficacy changes over time.
- Look at cultural practices that might increase coverage
 - positioning of canes
 - cane pruning

Acknowledgments

Team effort: Cornell, MSU, WSU, Private Industry (John Nye, Trickle-Eez Co.), Growers (John & J.D. Fowler, Fowler Farms) and Others USDA SCRI Grant No. 2011-51181-31037

Acknowledgments

- Collaborating trial site personnel: Dale IIa Riggs, Laura McDermott, Marvin Pritts, Rich Raba, Courteney Weber
- Technical and engineering assistance: Bill Larzelere, Steve Hesler, Jordi Llorens, Changyuan Zhai, Johanna Elsensohn, Tessa Lessord, Chrissy Dodge, Gabrielle Brind-Amour, McKenzie Schessl, and Allison Wentworth
- Funding support: New York Farm Viability Institute (Dave Grusenmeyer)

