Orchard disease: pathogen biology & management strategies

Eastern NY Apple IPM Training Kerik D. Cox Plant Pathology and Plant Microbe Biology Cornell University

Outline

- Disease management principles for tree fruit
- · Diseases of key importance in apples
- Apple management paradigms

Disease Management

- Exclusion Avoidance:
 - Site selection & preparation to minimize environmental factors favoring disease
 - · Proper soil fertility and pH
 - Good drainage (tiling, no clay, etc.)
 - Direct sunlight and air circulation (drying of fruits and leaves)
 - Manage weeds and plant away from wood lots:
 Harbor pathogen populations

Disease Management Principles

- Exclusion:
 - Prevent pathogen introduction by using certified disease-free planting stock (usually for viruses)
 - Ex: Plum pox of stone fruit
 - Ex: Apple proliferation phytoplasma

Apple proliferation phytoplasma

anstalt, Ins Dostbau Ar anstalt für

Neil Miles, University of Guel www.agf.gov.bc.ca

Managing Diseases (principles)

- Protection: protect plants by avoiding factors that favor disease:
 - Covered production avoids external sources of inoculum: (soil, wind, rain, weeds)
 - Hydroponic avoids soilborne inoculum, but favorable for aquatic pathogens and ↑ RH

Managing Diseases (principles)

- Protection by minimizing factors favoring disease:
 - Remove old plant material to increase air circulation
 - Avoid overhead irrigation or excessive watering
 - Avoid excessive nitrogen fertilization
 - Succulent tissues encourage GH & HT diseases
 - Dense foliage increases drying times
 - Harvest/Post-harvest:
 - · Avoid practices that may injure fruit or flowers

Managing Diseases (principles)

 Eradication (pathogen destruction):

 Sanitation: remove & destroy infected fruit or plants, leaf litter, and dead plant material

 Reduces disease inoculum and prevents spread of disease to neighboring plants

Disease Management

- · Eradication (pathogen destruction):
 - Sanitation: remove & destroy prunings, dead & infected shoots, infected fruit, and leaf litter
 Infected host plants
 - Reduces overwintering / oversummering inoculum

Managing Diseases (principles)

- Chemical management: (fungicides)
 - -Protection
 - · Apply to plants prior to infection
 - Majority of fungicides and bactericides are protectants
 - -Eradication
 - Destroys the pathogen on plant surface, or even after infection
 - Few fungicides have strong post-infection activity

Disease Management

- Chemical management: (fungicides & bactericides)
 - Key sources
 - 2015 Pest Management Guidelines for Commercial Tree-Fruit Production <u>https://demo.cuguidelines.net/</u>
 - Organic production guides
 <u>http://nysipm.cornell.edu/organic_guide/fruit_org_guid</u>
 <u>e.asp</u>

Outline

- · Disease management principles for tree fruit
- · Diseases of key importance in apples
- · Apple management paradigms

Apple Scab

- (Monitor weather: At silver/green tip)
- Pathogen: Venturia inaequalis
- Symptoms:
 - Scabby lesions on fruit and leaves
- Signs: lesions contain infectious spores
- Consequences:
- Unmarketable fruit
- Severe infections \rightarrow defoliate trees
- Host Factors: scab resistant varieties:
 - 'Liberty', 'Goldrush', 'Jonafree',

Apple Scab

(Monitor weather: At silver/green tip)

- Disease cycle:
 - -Overwinters: infected leaf litter
 - Infection: ascospores from leaf litter infect leaves and fruit during warm spring rains
 - Secondary spores on infected leaves spread infection

Apple Scab

- (Monitor weather: At silver/green tip)
- Cultural control:

 Remove leaf litter: Mechanically or by Nitrogen-assisted decomposition

Apple Scab

(Monitor weather: At silver/green tip)

- · Chemical control:
 - -Timed fungicide applications
 - Apply prior to forecasted rain events
 - Infections occur: Green tip (ascospore maturity) to 1st Cover
 - Simple forecasting applications available
 - · Ascospore maturity model
 - · Mills table infection events

Apple Scab

(Monitor weather: At silver/green tip)

- Chemical control strategy
 - -Apply protectively
 - Prior to forecasted weather favoring infection
 - Half rate of Mancozeb & Captan: popular with widespread resistance

-Save "kick-back" fungicides

- For infections events beyond pink
- When you are too late

Powdery Mildew (Monitor weather: bloom to summer)

· Powdery Mildew

- Historically not a serious disease concern in apples
- Highly susceptible varieties:
 'Cortland', 'Idared', 'Gingergold',
 'Jonagold', others
- Symptoms: white powdery blight of young shoots & leaves & fruit russeting
- Consequences: reduced yields from aborted blossoms, poor return bloom, & compromised shoot growth

Managing apple powdery mildew

- · Powdery Mildew management paradigm
 - Application of apple scab fungicides: infection periods and susceptible phenological stages (young leaves) overlap
 - DMI (e.g. Rally 40 WSP & Topguard) and Qol (Flint WG and Sovran) effective against both diseases: site-specific, safe, highly-effective, curative, & broad-spectrum
 - Widespread DMI and QoI use for apple scab has kept mildew in check

Fire blight

(Monitor weather: At pink)

- Pathogen: Erwinia amylovora
- Symptoms:
 - Spreading "burnt" blight from infected shoots/blossoms
- Signs: Ooze on cankers/fruit
- Consequences:

 Blossom, limb, and tree death

Fire blight

- (Monitor weather: At pink) Pathogen: Erwinia
- amylovora
- Host Factors:
 - Highly susceptible varieties
 - 'Gala', 'Gingergold', 'Honeycrisp'
 - Highly susceptible rootstock varieties
 M.26, M.9
 - Resistant rootstocks
 B.9 & G.series

Fire blight

(Monitor weather: At pink)

Disease cycle:

- Overwinters: cankers on infected shoots
- Infection: bacterial ooze in cankers or pruning cuts:
 - Spreads to blossoms and shoots by insects, wind, and rain
 - Bacteria moves
 systemically from infected
 blossom/shoots into limbs

Fire blight

- (Monitor weather: At pink)
- Control:
 - Prune "strikes" (blighted shoots)
 - As they appear
 - > 12" below
 discoloration or 2
 - discoloration or 2nd year
 - If cutting into leader, rogue the tree

Fire blight (Monitor weather: At pink)

Chemical Control:

- Copper application at GT: reduce inoculum
- -Timed antibiotic applications (Pink to PF)
 - Streptomycin or Kasugamycin during bloom
 - Based on accumulated heat units (degree hours) from bloom
 - Within 24hrs after hail storm

Fire blight (Monitor weather: At pink)

- FB forecasting
 - 1.Cougarblight model via NEWA: <u>http://newa.cornell.edu/</u>
 - 2.Maryblyt model:
 - http://www.caf.wvu.edu/kearneysville/ Maryblyt/

Outline

- · Disease management principles for tree fruit
- · Diseases of key importance in apples
- · Apple management paradigms

Apple disease management paradigm

- Need Precise timing of fungicides at key phenologies or weather accumulation
 - Disease forecasting with fire blight, apple scab, and fly speck sooty blotch
 - PAD counts to skip 1st applications spray season
 - Copper at silver tip for fire blight/apple scab inoculum
 - Urea on leaf litter for apple scab inoculum

Apple disease management paradigm

- Fungal diseases: apple scab, foliar leaf spots, powdery mildew
 - Urea 5% at silver tip to orchard floor
 - Silver tip: full rate copper application
 - Green tip to bloom: Captan 1/2 + mancozeb ½ + sulfur (< 7 day interval), Dodine, SDHIs, APs
 - Bloom, Petal Fall, 1st -2nd covers: DMI or Qols for powdery mildew and summer diseases

Apple disease management paradigm

- Fungal diseases: apple scab, foliar leaf spots, powdery mildew, summer diseases
 - 3rd to 5th cover (14-21 day interval): captan full + Phosphorus acid DMI + SDHI premix
 - Final cover: QoI + SDHI or DMI + SDHI premix
 - Post harvest: drench of fludioxonil, thiabendazole, pyramethanil for *Penicililum*, *Botrytis, Colletotrichum, Botryosphaeria*

Questions/Concerns/Clarifications

Apple disease monitoring systems

Apple disease forecasting

- Precise timing of fungicides at key phenologies, pathogen biology, or weather accumulation
- · Several forecasting systems
 - RIMpro, Skybit, Orchard Radar, and NEWA for apple scab, fire blight, and summer disease

Apple disease forecasting

Apple scab (NEWA)

· NEWA Disease forecasting for apple scab

http://newa.cornell.edu/index.php?page=applediseases

- Predicts ascospore maturity and calculates infection events
- · Provides warnings of possible infection events

Apple disease forecasting

Apple disease forecasting

Start Date & Time	End Date & Time	Wet Hours	Temp Avg. (F)	Rain (in.)	Days to Symptoms	Combined Event	
April 20 1:01 AM	April 21 11:00 AM	17	48	0.73	17	Yes	
April 17 12:01 AM	April 17 1:00 PM	13	50	0.13	16		
April 8 5:01 AM	April 10 4:00 PM	22	41	0.54	-	Yes	
April 2 10:01 PM	April 4 11:00 AM	31	45	0.49	17	Yes	

Apple disease forecasting

Sooty blotch & Fungicide depletion (NEWA)

- · NEWA Disease forecasting for flyspeck sooty blotch
- http://newa.cornell.edu/index.php?page=apple-diseases
- · Predicts onset of epidemic
- Assists with determining timing of summer disease fungicide applications based on depletion

Apple disease forecasting

Apple disease forecasting

Days since last fungicide application	4	5	6	7	8	9	10	11
Rain since last fungicide application	0.13	0.13	0.13	NA	NA	NA	NA	NA
Daily rain amount (inches)	0.01	0.00	0.00	NA	NA	NA	NA	NA
Rain probability (%) Night[Day 2				-1-	- -	- -	-1-	- -
Risk Level IPM Gui NO RISK - M LOW RISK - for apple scab. MODERATE more days with	o action n If first co Otherwis RISK - C precipita	eeded. ver applica ve, no action Check the 5 tion are pro	tion has no n needed. -day foreco edicted. Se	ot been maa ast; a cover e Fungicid	es below.		e made if t	wo ar

Apple disease forecasting

Fire Blight (NEWA)

- · NEWA Disease forecasting for fire blight
- <u>http://newa.cornell.edu/index.php?page=applediseases</u>
- Uses CougarBlight 2010 logic (WSU): to identify optimal timing of antibiotic applications during bloom
- Estimates the development of trauma blight & shoot blight based on user inputs

Apple disease forecasting

Apple disease forecasting

