Precision Management: How & Why We Should Irrigate

Jaume Lordan Sanahuja & Terence Robinson Dept. of Horticulture, NYSAES, Cornell University

Winter Schools 2016

Let's guess!

➤ 1 kg of apples 200 I of water

=

Let's guess!

- ➤ 1 kg of apples 200 I of water
- ➤ 1 liter of milk 1,000 I of water
- ➤ 1 beef steak 1,200 I of water
- > 1 Hamburguer 1,400 I of water

Water → 1 person/day 3,500 – 4,500 l of water demands to feed population: → 1 family/day 14,000 l of water

- > 1 person/year 1,460 m³ of water
- > 1 family/year 5,110 m³ of water

HOW

FIGURE 4.10 Water pathway through the leaf. Water is pulled from the xylem into the cell walls of the mesophyll, where it evaporates into the air spaces within the leaf. Water vapor then diffuses through the leaf air space, through the stomatal pore, and across the boundary layer of still air found next to the leaf surface. CO₂ diffuses in the opposite direction along its concentration gradient (low inside, higher outside).

Source: Taiz L., Zeiger E., 2010

How to irrigate?

Automating irrigation schedulling – basic principles

Design, Operation, and Management

Freddie R. Lamm James E. Ayars Francis S. Nakayama (Editors) "Automating irrigation systems is not simply a process of selecting physical components to operate valves, motors, pumps, and switches, but rather one of collecting and interpreting data on soil water status, plant water use and stress, and weather, and then using this information to schedule irrigation based on previously established management goals."

J. Ayars & C. Phene on *Microirrigation for Crop Protection.*

Automating irrigation **schedulling** – basic principles

 Irrigation schedulling: calculating irrigation dose & how to implement it

- Need to know:
 - ✓ Location & weather
 - ✓Crop
 - ✓ Soil

Water use & irrigation requirements

Automating irrigation **schedulling** – dose

Water Balance with the FAO/Penman-Monteith (FAO-56) model:

Automating irrigation **schedulling** – dose

FAO/Penman-Monteith equation (FAO-56)

$$ET_{o} = \frac{0.408 \Delta (R_{n} - G) + \gamma \frac{900}{T + 273} u_{2} (e_{s} - e_{a})}{\Delta + \gamma (1 + 0.34 u_{2})}$$

where

ET_o reference evapotranspiration [mm day⁻¹],
R_n net radiation at the crop surface [MJ m⁻² day⁻¹],
G soil heat flux density [MJ m⁻² day⁻¹],
T mean daily air temperature at 2 m height [°C],
u₂ wind speed at 2 m height [m s⁻¹],
e_s saturation vapour pressure [kPa],
e_a actual vapour pressure [kPa],
e_s-e_a saturation vapour pressure deficit [kPa],

$$\Delta$$
 slope vapour pressure curve [kPa °C⁻¹],
 γ psychrometric constant [kPa °C⁻¹].

				Maximum
	1			Crop Height
Сгор	K _{c ini} '	K _{c mid}	K _{c end}	(h)
				(m)
n. Fruit Trees				
Almonds, no ground cover	0.40	0.90	0.65 ¹⁸	5
Apples, Cherries, Pears ¹⁹				
 no ground cover, killing frost 	0.45	0.95	0.70 ¹⁸	4
 no ground cover, no frosts 	0.60	0.95	0.7518	4
 active ground cover, killing frost 	0.50	1.20	0.95 ¹⁸	4
 active ground cover, no frosts 	0.80	1.20	0.85 ¹⁸	4
Apricots, Peaches, Stone Fruit ^{19, 20}				
 no ground cover, killing frost 	0.45	0.90	0.6518	3
 no ground cover, no frosts 	0.55	0.90	0.65 ¹⁸	3
 active ground cover, killing frost 	0.50	1.15	0.90 ¹⁸	3
 active ground cover, no frosts 	0.80	1.15	0.85 ¹⁸	3
Avocado, no ground cover	0.60	0.85	0.75	3
Citrus, no ground cover ²¹				
- 70% canopy	0.70	0.65	0.70	4
- 50% canopy	0.65	0.60	0.65	3
- 20% canopy	0.50	0.45	0.55	2
Citrus, with active ground cover or weeds ²²				
- 70% canopy	0.75	0.70	0.75	4
- 50% canopy	0.80	0.80	0.80	3
- 20% canopy	0.85	0.85	0.85	2
Conifer Trees ²³	1.00	1.00	1.00	10
Kiwi	0.40	1.05	1.05	3
Olives (40 to 60% ground coverage by canopy) ²⁴	0.65	0.70	0.70	3-5
Pistachios, no ground cover	0.40	1.10	0.45	3-5
Walnut Orchard ¹⁹	0.50	1.10	0.65 ¹⁸	4-5

Table 12 continued

continued...

¹⁸ These K_{c end} values represent K_c prior to leaf drop. After leaf drop, K_{c end} ≈ 0.20 for bare, dry soil or dead ground cover and K_{c end} ≈ 0.50 to 0.80 for actively growing ground cover (consult Chapter 11).

Automating irrigation schedulling – dose

Apple Water Use in a Humid Climate The Problem

too much irrigation in NY, especially in cool years

Automating irrigation schedulling – dose

Apple Water Use in a Humid Climate - The Problem

Egrass = f(Rad/ VRD-

Source: A. Lakso

Measurement of Tree ET in New York

- Sap flow gauges were used with short-term direct calibration with "balloon" gas exchange, then balloons removed
- Key micromet parameters measured simultaneously

Apple-Specific Penman-Monteith Equation

Dragoni, D. and Lakso, A.N. 2011. An apple-specific ET model. Acta Hort. 903:1175-1180.

Getting the Model to Users

Online version: Cornell Apple ET Model

Programmed to automatically calculate daily apple tree ET based on data from weather stations in the apple-growing regions

Contact NRCC © 2009 Northeast Regional Climate Center 1123 Bradfield Hall, Cornell University, Ithaca, NY 14853 | Phone: 607-255-1751 | Fax: 607-255-2106

Collaboration with Dr. Art DeGaetano, Director

Cornell Apple ET Model

http://newa.cornell.edu/cropmanagement/appleirrigation

Cornell Apple ET Model

Weather Station:	Мар	Result	ts More i	nfo				
Geneva Select Date: 6/8/2015 Continue	Cha	Apple ET Model for Geneva Change green tip date or tree density and click "Calculate" to recalculate results. Changing "Age of Orchard" will automatically recalculate table.						
	Green t	tip date	In row spaci	ng Between	row spacing	Trees per acre	Age of orch	ard Water balance
	4/17/	2015	3 fee	t 12	feet	1210	Mature	\$
			Apple Evapotranspiration Model Results					
	Date	Date Orchard ET (gallons)		s) R	Rainfall		Water Balance (gallons/a	
		per tree	e per acro	e inches	gallons/acre	e gallons/acre	Daily	Cumulative
	Jun 1	0.2	252	0.23	4372	0	4120	0
	Jun 2	0.7	859	0.00	0	0	-859	-859
	Jun 3	1.9	2321	0.00	0	0	-2321	-3180
	Jun 4	1.4	1708	0.00	0	0	-1708	-4888
	Jun 5	2.0	2397	0.53	10074	0	7677	0
	Jun 6	1.4	1716	0.09	1711	0	-5	-5
	Jun 7	2.0	2388	0.00	0	0	-2388	-2393
	Jun 8	0.5	660	1.29	24520	0	23860	0
	Jun 9	1.1	1288	0.51	9694	0	8406	0
	Jun 10	2.1	2596	0.05	950	0	-1645	-1645
	Jun 11	2.0	2380	-	-	0	-2380	-4025
	Jun 12	1.8	2163	-	-	0	-2163	-6189
	Jun 13	1.6	1939	-	-	0	-1939	-8128
	Jun 14	2.0	2399	-	-	0	-2399	-10,526
						1 11 1 1 10		

Accuracy of the weather data is the responsibility of the owners of the weather station instruments. NEWA is not responsible for accuracy of the weather data collected by instruments in the network. If you notice erroneous or missing weather data, contact <u>NEWA</u> and we will contact the owner of the instrument.

Water requirement calculation

Each soil has its own properties

High humidity retention Aireation problems

Source: agriculture.vic.gov.au

Source: intechopen.com

Water requirement calculation

Why

Why irrigate

Functions of water in plants:

- ✓ Mantenance of cell turgor
- ✓ It regulates the plant temperature (through transpiration)
- ✓ Uptake & transport of nutrients & secondary plant compounds
- Element involved in many internally chemical processes (Photosynthesis)

What if water is missing?

Nutrient uptake

Water is the driving force of the plants, and regulates many processes, is the major responsible for nutrient uptake **If irrigation fails, fails nutrition.**

Why irrigate

FIGURE 3.2 Productivity of various ecosystems as a function of annual precipitation. Productivity was estimated as net aboveground accumulation of organic matter through growth and reproduction. (After Whittaker 1970.)

Water Stress with Young Trees

- Limited root system due to digging in nursery
- Transplant shock
- Rapid Leaf area development with branched trees
- Highly feathered trees experience water stress in late May and June due to limited root systems and extensive leaf area
- Water must be applied frequently to limit water stress on newly planted trees. Trickle irrigation must be installed within 2 weeks of planting
- Newly planted trees have limited nutrient uptake due to damaged root systems.

2015 Trial

2015 Data

2015 Data

Assessing Tree Water Status

Assessing Tree Water Status

Source: thefullwiki.org

2015 Data **Geneva**

2015 Data **Hudson**

Per acre	Irrigated	Non-irrigated	Difference
Yield	11.2 kg/tree	9.7 kg/tree	1.5 kg/tree
Yield (1,117 trees)	12,560 kg	10,849 kg	1,710 kg
Yield (1,980 trees)	22,263 kg	19,231 kg	3,032 kg
Yield (1,117 trees)	692 bu	598 bu	94 bu
Yield (1,980 trees)	1,227 bu	1,060 bu	167 bu
Income (1,117 trees)	7,410 \$	5,858\$	1,552 \$
Income (1,980 trees)	13,135 \$	10,385 \$	2,750 \$

Per ha	Irrigated	Non-irrigated	Difference
Yield	11.2 kg/tree	9.7 kg/tree	1.5 kg/tree
Yield (2,778 trees)	31,236 kg	26,982 kg	4,254 kg
Yield (4,902 trees)	55,118 kg	47,611 kg	7,507 kg
Yield (2,778 trees)	1,722 bu	1,487 bu	235 bu
Yield (4,902 trees)	3,038 bu	2,625 bu	414 bu
Income (2,778 trees)	18,429 \$	14,570 \$	3,859 \$
Income (4,902 trees)	32,520 \$	25,710 \$	6,809 \$

Keep in mind

- Newly planted apple trees can undergo water stress soon after growth starts limiting first year growth
- Trickle irrigation has its largest impact in the first few years and so should be installed early in the first year
- In dry years, the application of water should begin in mid-May. In other years, the application of water can be delayed until early June. Check Cornell model
- Using the ET model to precisely apply the proper amount of water will help ensure that proper fruit size is achieved each year

Thanks for your attention! Constant of the local division of the local