Diagnosing Berry Disease in Small Fruit Plantings

Regional Small Fruit School Ballston Spa, NY 2016

> Kerik D. Cox NYSAES

Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University

Outline

- Identifying disease problems
 - Damage, pathogens, & symptoms
 - Tips for differentiating disease from injury
 - Disease scouting
- Special disease diagnostic situations
 - Viruses
 - Root diseases

- Disease = change in physiology caused by microbial attack
 - Examples: rots, spots, lesions, & discoloration
 - Giveaways: signs of the pathogen
- Damage = trauma caused by force, energy & chemicals
 - Examples: hail, animals, herbicides, & heat
 - Giveaways: insects, hail storm, baseball bat, & heat/sun

Hail < Damage > Herbicide

Disease

- Symptoms: observable physiological reactions resulting from pathogen infection
- Examples?:
 - Discoloration
 - Lesion: wound
 - Wilt
 - Chlorosis: yellowing of tissue
 - Necrosis: Darkening and death of tissue

- Symptoms: Examples?
 - Blight: general rapid death of several plant organs
 - Rot: necrosis and maceration of fleshy tissue
- Pathogen: organism capable of inciting disease (physiological change)
 - Parasite: feeds off, can vector, but does not incite disease
- Signs: pathogen, its parts, or products on the host

- Indications based on symptom distribution
 - Patchy vs. Uniform distribution symptoms over plants/plantings
 - Biotic diseases usually have patchy distribution
 - Abiotic injury usually uniform distribution
 - Soilborne disease aggregate across plantings
 - Patches of pathogen populations
 - Coincident with wet spots
 - Dry fields = abiotic/Injury

- Disease is self-replicating: symptoms developing over time/other plants?
- When a producer has a disease problem that merits treatment, the whole planting should look fairly symptomatic

Scouting for Diseases

- Problems with scouting and diseases
 - You can't see the pathogens or trap pathogens until after infection has occurred
 - Many management practices & most chemical applications protect against infection
 - Once you see symptoms or the pathogen it's usually TOO LATE!
- We scout for symptoms of diseases
 - Benefits:
 - Prevent spread of new infections
 - Be prepared for next year

Outline

- Identifying disease problems
 - Damage, pathogens, & symptoms
 - Tips for differentiating disease from injury
 - Disease scouting
- Special disease diagnostic situations
 - Viruses
 - Root diseases

Special disease: Viruses

- Viruses: abiotic infectious particles
 - Nucleic acids and proteins that disrupt cellular physiology
- Viruses infection = loss of plant & planting?
- Virus problems look similar to subtle horticultural problems – Why?
 - Virus infection primarily upsets the plant physiology in ways similar to a nutrient deficiency or toxicity
- Virus infections can be asymptomatic for many years until titers build sufficiently
 - Asymptomatic infections are transmissible

Key small fruit viruses in N

- Tobacco and Tomato ringspot virus (ToRSV & TRSV)
 - Symptoms: Asymptomatic with consequences, and malformed leaves with chlorotic & necrotic spots
 - It may take more than 10 years before symptoms become apparent
 - Consequences: poor growth, poor or absent fruit production, plant death

Key small fruit viruses in NY

- Tobacco and Tomato ringspot virus (TRSV & ToRSV)
 - Vector: Dagger nematode
 - Thrives in sandier soils
 - Doesn't move far
 - Numerous weeds can host the nematode – widely distributed throughout a planting
 - Management
 - Should remove and replant elsewhere with healthy stock
 - Plant to non-host or leave fallow

Nematode photo © Peter Mullen

Key small fruit viruses in NY

Blueberry Scorch Virus (BIScV) Symptoms:

Blight and necrosis of developing leaves and flowers during bloom (start brown, bleach gray)

- May look like frost injury and may kill young twigs
- Cultivar-specific chlorosis and marginal necrosis patterns

Key small fruit viruses in N

- Blueberry Scorch Virus (BIScV)
 - Consequences: poor growth, poor or absent fruit production, plant death
 - Vector: Aphids
 - Quickly move throughout a planting, and to neighboring fields
 - Not more than 0.5 miles

Key small fruit viruses in NY

- Blueberry Shock Ilarvirus (BIShV) Symptoms:
 - Blight of flowers and developing leaves during
 bloom
 - Second flush of growth in the summer and bushes look normal, but have no fruit
 - Have symptoms for only 1 4 years and then infections
 become quiescent

Key small fruit viruses in NY

- Blueberry Shock Ilarvirus (BIShV)
 - Consequences: Bushes lose productivity, but can recover with good yields in a perfect operation
 - Vector: Transmitted in pollen spread by bees.
 - Can quickly spread within a field and to neighboring fields
 - Quiescent infections are still transmissible

Distinguishing viruses from other problems

- 1. Number of shoots and leaves expressing virus-like symptoms (when symptomatic, virus symptoms often systemic)
 - Don't be alarmed by a few crumbly berries, or oddly chlorotic leaves on a cane or bush
- 2. Intensity of virus-like symptoms
 - Although infected plants can be asymptomatic, poor fruit production, or lack thereof is not reason to suspect a virus

Distinguishing viruses from other problems

3. Timing of symptom appearance

- Virus tissue titers during peak biomass production in spring - virus symptoms most apparent in spring
- Sudden appearance of bizarre symptoms end of the summer during the beginning of senescence - not likely a virus

4. Symptom distribution

- Usually patchy distributions due to restricted movement and habitation patterns of the virus vector
- Varieties vary in susceptibility and symptom expression -Uniform distribution across blocks and varieties are likely abiotic causes (like nutrition)

Special: Root diseases

- Root diseases are frustrating in established operations:
 - Most effective management practices prior to planting
 - Root diseases only become apparent after planting is established
 - Post planting management practices less effective, slow spread only, & don't cure affected plants

Special: Root diseases

- Root diseases are frustrating to indentify/diagnose:
 - Pathogens are soilborne protected and hidden in the soil
 - Diagnostic symptoms are below ground prevents recognition during the time when action could save the planting
 - Once dead = fungal decay free for all

- Symptoms:
 - Reduced vigor and productivity (unthrifty) & even death

Winter Injury

- Diagnosis: cut through crown of dying plants
 - Cortex of crown brown (dead) & vascular tissue white and healthy
 - Most root disease pathogens prefer vascular tissue, secondary decay microbes rot cortex

Drought Injury

- Decline from drought injury: plants not well irrigated during summer drought
 - Plant stressed from a lack of water
- Symptoms:
 - Plants wilt and developing leaves and fruit shrivel
- Susceptible to chemical injury

Drought Injury

- Diagnosis: remove plant from soil and cut through crown
 - Soils hard and dry?
 - Rainfall for last two weeks?
 - Fine roots present, dry and sinewy?
 - Cortex of crown hard to cut & vascular tissue white

Phytophthora Root Rot

- Phytophthora root rot and red stele
- Aquatic pathogen: wet soils, low-lying areas, & heavy rains
- Symptoms:
 - Initial: shoot stunting, chlorosis, leaf scorching
 - Wilt and death of plants in patches (as soil warms)

Phytophthora Root Rot

Diagnosis:

- Select wilting plant (not dead), remove soil, & look "rattail" root system
- 2. Remove brown epidermis from crown and major roots
- 3. If white underneath, healthy. If reddish brown, then *Phytophthora*

Phytophthora Root Rot

1.

2.

3.

from root

ateral roots

If white underneath, healthy. If lower sections of the 4. root system are reddish/chocolate brown, and are next to sharply delineated sections of white tissue, suspect Phytophthora

Black Root Rot

- Disease complex resulting from: soilborne pathogens, lesion nematodes, compaction, wet soils working in concert
- *Phythium:* aquatic pathogen similar to *Phytophthora*
 - Shows up wet spots or areas w/ poor drainage
 - Phytophthora management practices can help
- Symptoms: (primarily occurs in establishment year)
 - Reduced vigor and productivity, stunting, & even death

• Diagnosis:

- 1. Select a young declining plant, and remove soil from the root system
- 2. Look for rattail root system: loss of fine and lateral roots
- 3. Black coalescing patches/lesions on main fleshy roots
- 4. Vascular tissue in crown initially white and healthy

Black Root Rot

- Do not confuse black root rot with natural blackening occurring with age
 - Older roots have a dark
 epidermal coloring looks
 black
 - Inside these will be white and not covered with dark lesions

Black Root Rot

- Disease Development:
 - Occurs gradually when subjected to cold injury, herbicides, compaction, & excessive water
- Control:
 - Plant material with healthy white root systems
 - Prior to replanting, rotate out of strawberries
 2-3 years
 - Promote water drainage in planting
 - Minimize soil compaction
 - Phytophthora control measures will also help

Questions

New York State Berry Growers' Association

