Grapevine Nutrition & Vineyard Nutrient Management

Lailiang Cheng Department of Horticulture Cornell University To effectively manage vine nutrition, we need to know:

- Vine nutrient demand
- Vine nutrient supply
 - Nutrient reserves
 - Soil nutrient availability
- Vine nutrient status

Seasonal patterns of vine N demand (Concord, based on Hanson, 1995)

Vine N demand

- Two periods of high demand
 - -2 wks before bloom to end of shoot growth;
 - Veraison to harvest.
- Cropload
 - 2.5 ~ 3 lb. N/ton fruit;
 - 5 lb. N in shoots and leaves/ton fruit.
- Variety difference

– Labrusca (70lb) > hybrids (50) > vinifera (35)

N supply from reserves

- Reserve N provides 15 to 30% of the total vine N demand.
- Reserve N is a main source for vine growth from budbreak to bloom.

Soil N supply

- Soil texture
 - Sandy or gravel soils have low N supply
- Organic matter: 1% = 10 to 20lb. N/A
- Soil pH.
- Soil moisture
 - Mineralization is limited in dry years.
- Weed competition.

Vine N status

- Near veraison petiole samples
 - -0.8 to 1.2%
- Bloom petiole samples
 - -1.5 to 2%
- Vine shoot growth, vine size, and trellis fill.

Seasonal patterns of petiole N of Concord (Shaulis, 1956)

N fertilization for labrusca

- Rate: 30 to 80 lb/acre
- Timing
 - 1/2 applied to soil between budbreak and bloom
 - 1/2 applied shortly after bloom

N fertilization for vinifera

- Rate: 0 to 50 lb./acre
- Timing and method
 - 2/3 applied to soil between budbreak to bloom;
 - 1/3 applied to foliage just before and during veraison.
- For sandy soils: split applications.

Yeast available nitrogen in NY musts (Henick-Kling et al., 1997)

A total 120 samples were analyzed: Average: 181 mg/L Lowest: 51 mg/L Highest: 346mg/L

Leaf N and Juice YAN without any N application

Juice YAN in response to soil N application

Juice YAN in response to foliar N application

Summary on YAN

- Background juice YAN was lower in a dry year than in a wet year.
- Foliar N application was more effective in a dry year than in a wet year.
- It appears that 25 lb soil N plus 3 foliar urea sprays was a good combination.

Phosphorous deficiency

Pinot noir on Long Island grown on low pH soil with low petiole P. From: Bob Pool, NYAES.

Concord petiole AI and P concentration In relation to soil pH. From Terry Bates

K concentration in 'Concord' berries

Seasonal patterns of vine K demand (From Larry William)

Vine K demand

- Fruit is a major sink of K.
- Cropload
 - 5 lb. K/ton fruit;
 - 2.5 lb. K in stems and leaves/ton fruit.
- Variety difference

– Labrusca (75lb) > hybrids (50) > vinifera (35)

Soil K supply

- Soil parent materials
 - NY soils generally have low K level (<200lb).
- Soil texture
 - Sandy or gravel soils have low K supply power
- Organic matter
 - Low organic matter leads to low K supply
- Soil moisture

- Drought or weed sharply reduces K supply.

• Mg/K competition:High Mg often leads to low K.

 Potassium deficiency is most likely to occur in a dry year in a vineyard with heavy cropload, poor weed management, and after application of dolomitic limestone.

Soil and petiole K standards

- Soil: 300 to 400 lbs/A.
- Fall petiole samples: 1.3 to 2.0%
- To support a high cropload in a dry year, petiole K needs to be maintained at the upper end of this range.

Soil K fertilization

- Maintenance Rate: 50 to 120 lb K₂O/A
- Correcting deficiency: 150 to 300 lb/A
- Timing: fall/spring application

Ca and Mg

- Soil: Ca Mg
 Labrusca 1500 ~ 2500 lb 150 ~ 300lb

 Vinifera 2500 ~ 4000 lb 300 ~ 400 lb
- Fall petiole: Ca: 1.2 to 2%; Mg: 0.35 to 0.5%
- Low Ca and Mg availability typically associated with low soil pH.

Soil calcium and magnesium in relation to pH (A survey of the vineyards in the Finger Lakes)

pH and Liming

- Optimum pH
 - Labrusca: 5.5
 - hybrids: 6.0
 - vinifera: 6.5
- Maintenance rate
 - -1 ~ 2 tons dolomitic lime per year.

Correcting Mg deficiency

- In addition to liming, Mg can also be provided by Sulpomag (22% K₂O and 11% Mg) and Epsom salts (10% Mg).
- Foliar application of Epsom salts at 15 lb/100 gal at 1 to 2 wk intervals.
- Monitor petiole K/Mg ratio (4:1).

Boron

- Important for fruit set and fruit growth.
- A narrow range between deficiency and toxicity (25 to 50ppm).
- Soil moisture affects B availability.
- Soil application at 1 to 2lb B/acre at budbreak.
- Foliar spray at 1 lb Solubor/100 gal at 6 to 10 inch shoot growth and 14 days later.

Poor Fruit Set

Boron Foxicity

Zn

- Important for shoot and fruit growth
- Optimum range 30 to 60 ppm
- Foliar spray of Zn-chelate or other Zn products at 1 lb Zn/ acre 2 wk before bloom.

Soil aluminum in relation to pH

(From Terry Bates)

References

- Bates, T. http://lenewa.netsync.net/public/bates/NutrientRec.htm
- Chen, L. S. and L. Cheng. 2003. J. Amer. Soc. Hort Sci. 128: 754-760.
- Chen, L. S., B. R. Smith and L. Cheng. 2004. J. Amer. Soc. Hort Sci. 129: 738-744.
- Cheng, L., G. Xia and T. Bates. 2004. J. Amer. Soc. Hort Sci. 129: 660-666.
- Hanson, E. J. and G. S. Howell 1995. *HortScience* 30(3): 504-507.
- Pool, Bob. www.nysaes.cornell.edu/hort/faculty/pool/GrapePagesIndex.html
- Xia, G. and L. Cheng. 2004. J. Amer. Soc. Hort Sci. 129: 653-659.