Chapter 10 (pg. 85) Fate of Pesticides in the Environment *****Environment: Everything around us *****Natural and manufactured, indoor and out – Air, soil, water, animals, plants - Houses, restaurants, factories, offices Where do pesticides go and what effects can they have in the environment?

Pesticides Released into Environment

Apply them: Deliberate release
 Spill them: Accidental release
 Dispose of them: Proper disposal will prevent pesticide from ending up in unintended places

Risks to the EnvironmentNon-Target Plants

* Plant injury = Phytotoxicity
* More common with herbicides
* Too high rate, wrong timing, unfavorable environmental conditions
* Can occur on any part of the plant

Insecticides can kill beneficial insects
 Fish: water pollution from pesticides
 Birds: ingest pesticide granules, baits, or treated seeds, crops
 Livestock: contaminated and drinking water

*Animal predators: Secondary poisoning

Preventing Bee Loss

Read the label & follow directions
Are bees foraging in target area?
Use pesticide least hazardous to bees
Ground vs. aerial application
Spray in early morning evening

*Weeds are not in bloom

*Spot treat if possible

Sectivity Characteristics (5)

Solubility: ability to dissolve in a solvent

- Highly soluble = dissolve easily
- Contaminate water

* Adsorption: attracted/binds to soil particle

- Oil soluble more attracted to clay and OM
- Less likely to move off site
- Different from "Absorption" which usually means uptake or moving into something

Sectivity Characteristics

Persistence: Ability to stay in its original form for an extended period.

- Good: long term pest control
- Bad: harm non-target species
- Pesticide Degradation: Breakdown of pesticide into less toxic compounds.
 - Fast and slow (1 year +)
 - Chemical, Microbial, Photodegradation

Pesticide Characteristics

Volatility: Tendency of a pesticide to turn into a gas or vapor.

- Volatility increases
 - Temperature
 - Wind
 - Humidity

How Pesticides Move

- Movement in wind or air currents away from the application site is called *drift*.
- ***** Most pesticide movement in water is by:
 - Surface movement off treated site (*runoff*)
 - Downward movement through soil (*leaching*)
- * Pesticides that adsorb onto soil particles can travel long distances on wind-blown or soil runoff (erosion).

How Pesticides Move

Pesticides can move away on treated plants, animals, and objects.

- Work clothes, PPE equipment
- *Applying too much*Pesticide is spilled

Heavy rain moves off targetWater-soluble or persistent pesticide

Areas Sensitive to Pesticides

Outdoor: Playgrounds, recreational areas, grounds of schools and hospitals, habitats of endangered species, surface waters, public gardens, livestock, feed crops
 Indoor: Where people live, work, shop, or go to school; food or feed is processed, stored or served; confined livestock

Endangered Species Brink of extinction

*Each state is responsible for protecting endangered and threatened species from the harmful effects of pesticides.

- Product label may carry a statement to consult a county bulletin
- *Developed by the EPA
- Precautionary measures: buffer strips, reduced rates or no application permitted

Sources of Water Contamination

******Point-source pollution*

Comes from a specific, identifiable place or location: pesticide spill, back-siphoning, or improper disposal

*****Non-point-source pollution

*Comes from a widespread area: field

Contamination of Surface Water

Factors that Affect Runoff *Slope *Vegetative cover – filter strip *Soil characteristics – clay vs. sand *Temperature – frozen ground *Rainfall or irrigation – heavy or excessive

Groundwater Contamination

★ Groundwater: underground water in the cracks in the bedrock and in the spaces between sand, gravel and rocks.

***** Source for springs and wells

***** 70% of all water for public and private use

Water seepage Unsaturated zone Water table

Pores filled with air and water

Pores filled with water

Geologic formation is called an <u>aquifer</u>

Groundwater Contamination

Pesticides can move downward with the water that recharges the aquifer. Process is called *leaching*.

- Characteristics of <u>pesticides</u> that promote leaching
 - High solubility
 - Persistence
 - Low adsorption
- *Label will state leaching concerns

Pesticide Leaching Soil Properties & Environmental Conditions

Characteristics of soils and the <u>Environment</u> that promote leaching

– Soil Texture and Structure

- Sandy soils more prone to leaching
- Size and shape of pores

– Organic Matter

- ability to hold water, adsorb pesticides
- Depth to Groundwater
 - Shallow water table at risk
- Geology: gravel deposits vs. clay layers

Minimize Groundwater Contamination Follow the use directions on the label!

Best Management Practices (BMP's) are effective, commonsense practices that emphasize proper mixing, loading, application and disposal of pesticides. IPM Principles

- Use non-chemical methods where possible
- Select products less likely to leach or runoff
- Calibrate sprayer regularly

Best Management Practices

***Identify Vulnerable Areas**

- Sandy soil, sinkholes, wells, streams, ponds
- Streets, storm drain, drainage ditches
- Keep Pesticides Away From Wells
- *Select Appropriate Mix & Load Site
 - Consider a mixing and loading pad
 - Do not mix near wells, surface water
 - 50 feet

Containment Pad for Mixing & Loading

*****Pads designed to contain spills, leaks, overflows, and waste water *Easier to clean up spills *****Prevent environmental contamination *****Made of impermeable material *Concave or with berms, curbs *****Sump system for removal

*Back-siphoning is the reverse flow of liquids into a fill hose.
*Suction occurs when water is turned off
*Suction could cause pesticide contamination of your water source.

*Use a water tank
*Maintain an air gap: 2x the hose diameter
*Install an anti-siphoning device (must be state approved)

Chapter 22: Pesticide Drift (pg.175)

Pesticide Overspray: occurs when pesticide is directly sprayed outside of the target area. Always avoidable!

*Pesticide Drift: occurs when air currents cause pesticide to be deposited outside a target application site.

Types of Drift

Spray Drift: small spray droplets are carried by air movements from the target.

*Vapor Drift: when a volatile pesticide changes from a solid or liquid into a gas and fumes move from the target

Factors that Increase Drift

Smaller droplet size: moved easier
Increase wind speed
Increase in temperature: Evaporation
Decrease in humidity: Drier air
Increase nozzle to target distance

Drift: Weather Conditions

*Air Stability: warm air currents and higher wind speeds at midday.

- * **Temperature Inversion**: rapid cooling of the earth surface which leads to a layer of warm air between layers of cold air.
 - Clear calm nights
 - Fog or smoke

Factors that Affect Vapor Drift

*** Temperature**: increases volatility *** Soil Conditions**:

- Wet soil increases the rate of volatilization
 Decreases the effectiveness of incorporation
- *** Pesticides:** Volatile herbicides, 2,4-D
- Droplet size: smaller the droplet, quicker to vaporize
- Humidity: drier the air, quicker to vaporize

Drift Management

First rule of drift management is to know when <u>NOT</u> to spray.

- *Be aware of site conditions and assess the risks <u>BEFORE</u> you prepare the pesticide
- *Assume there will be little or no tolerance for drift

Choosing to Spray

- Even under good spraying conditions, drift cannot by totally eliminated
- Keep the nozzle as close to the target as possible
- Apply the coarsest droplet size that provides sufficient coverage & pest control
 Droplets < 50 microns highly susceptible

Reduce Droplet Size

***** Spray Pressure – low as possible *****Nozzle: select for the coarsest droplet ***** Spray Rate: nozzle vs. pressure; consider changing the nozzle before changing the pressure! *****Drift-Reduction Agents *****Sprayers

Chapter 23: Application Safety (pg. 185)

Before application

*Read and understand the label!
*Be prepared for emergencies
*If alone, let one other person know where
*Work in pairs – highly toxic pesticides
*Make voice or visual contact every 2 hr.
*Check through equipment

During Application

*While you are applying pesticides, you are responsible for protecting yourself, other people, domesticated animals, and the environment.

*Minimize drift and runoff

*****Wear appropriate PPE

*Monitor your equipment as you apply

Increased Risk to Exposure

Mist blower or airblast sprayer
Aerosol and fog generator
High pressure sprayers & power dusters
Equipment that directs applications over your head

★Enclosed areas

Reentry Restrictions (WPS)

*****Check the pesticide label

*"Agricultural Use Requirements" (REI and PPE information)

* Agricultural employer is responsible for keeping workers out of a treated area.
* No REI, reenter after application
* Soil fumigants more strict