

Weed Management In Orchards

David Granatstein

WSU Extension Wenatchee, WA

NYS Fruit Schools -- Feb. 5-6, 2018

Outline

- Why weed control?
- Weed control options
- Results from nonchemical weed control
- Economics
- Conclusions

Weed Control

Why control weeds?

- Limit competition with young trees nutrients, water
- Minimize rodent habitat
- Weeds as hosts for pests, disease inoculum
- Avoid blocked sprinklers

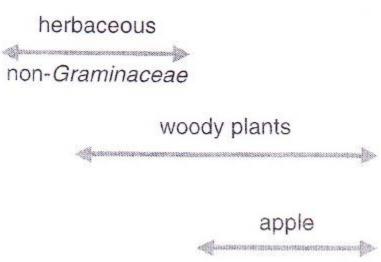
Apple Root Density

Length of root per area of soil surface (cm cm-2)

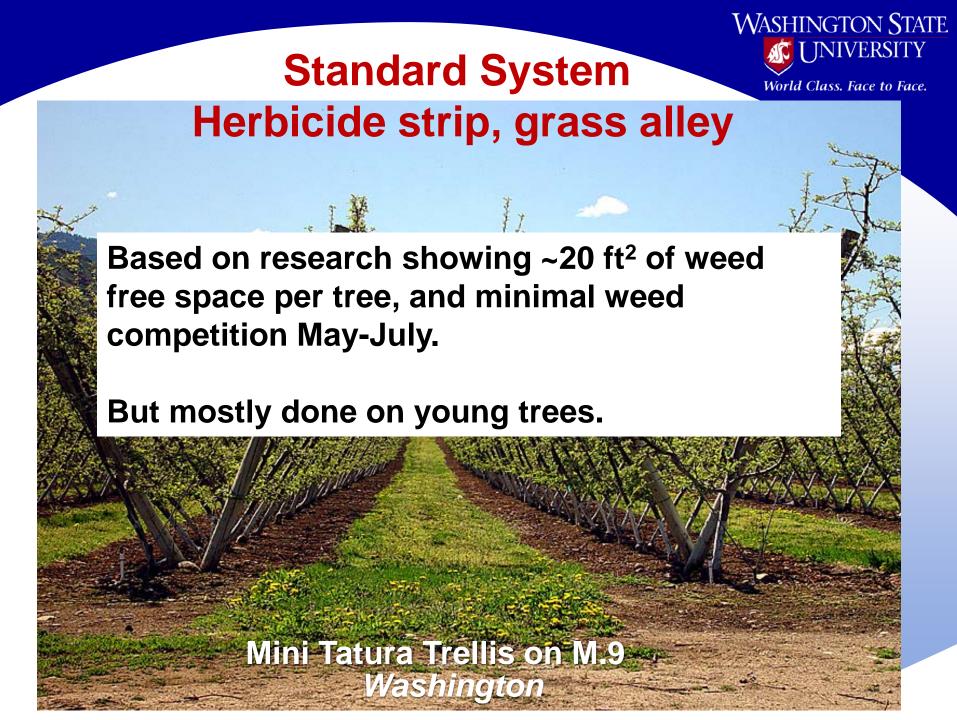
104

103

102


10

1


herbaceous

Graminaceae

Weed Control Options

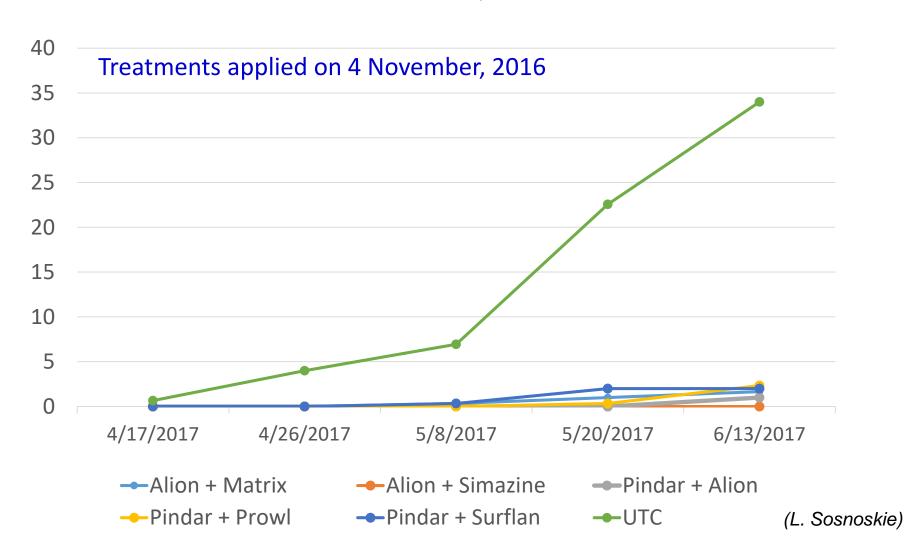
Orchard Weed Control Options

	Pro	Con
Herbicides	Control weeds around trunk; rodents; no tree, root damage; low cost	Resistance, leaching, soil quality loss; effectiveness
Mowing	Fast, inexpensive	Short-term suppression; still have competition, habitat
Tillage	Effective; rodents; low cost	↓ tree growth, fruit size, soil quality; damage trees
Flaming	Control weeds around trunk; rodents; low cost	Tree injury, perennial weeds, fossil fuel
Inert mulches	Effective; soil quality; moisture	Costly; N tie up; soil quality
Living mulches	Add biodiversity; soil quality; fix N	Competition; rodents; persistence

(Granatstein & Mullinix, 2008)

How to combine strategies? Change system with age of orchard?

Orchard Herbicide Guidance

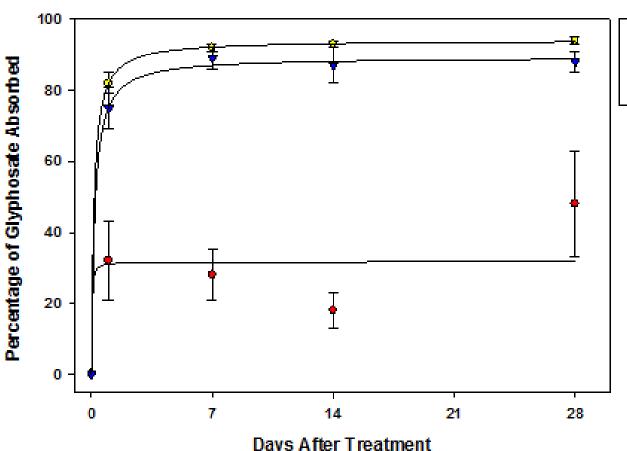

Tim Smith approach

- 1. Combination of two residual herbicides, fall apply; control emergence of winter annual, spring annual, summer annual
- 2. Systemic herbicide: mid-late summer; perennials, control escapes
- 3. Burndowns: small seedling weeds
- 4. "Mix it up". Use different combinations, different modes of action for better control, resistance mgt.

(Fall control is best for perennials)

Percent (%) Weed Cover up to 7 Months after Herbicide Application

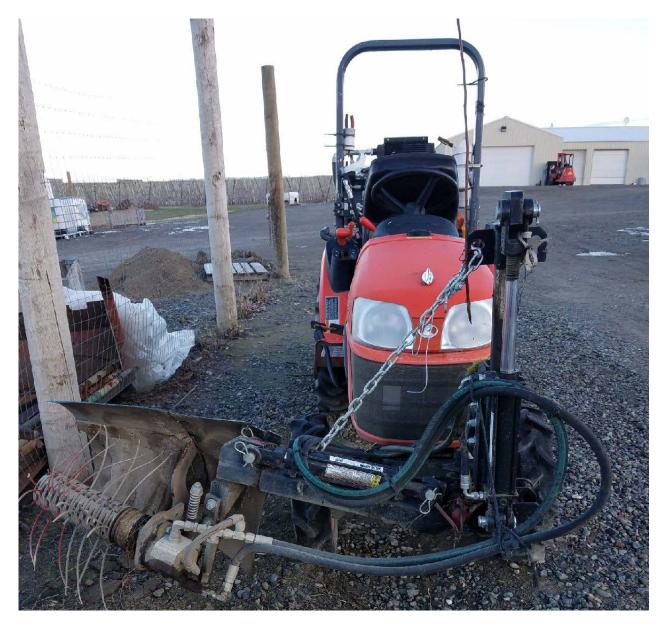
Wenatchee, WA



Glyphos Damage

Figure 1. The percentage of glyphosate absorbed by leaf, by the bark above graft, and by the bark below graft at 1, 7, 14, and 28 days after treatment (DAT).

Glyphosate Absorption on Gala/M9 Leaf and Bark Treatments



- Treated Leaf
- Treated Above Graft Bark
- ▼ Treated Below Graft Bark
- Did see translocation, no injury, but some indication of less tree growth
- Microbial communities did separate by trt

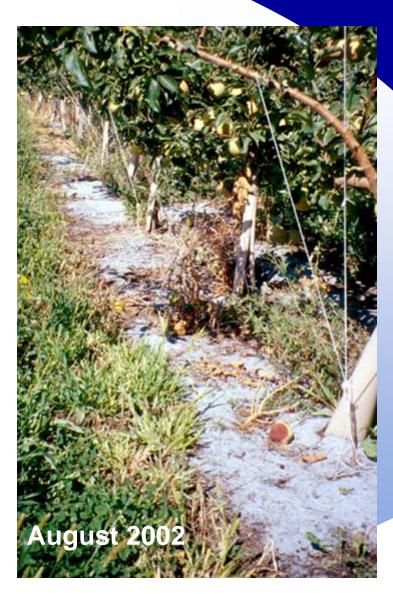
(I. Burke, 2016)

String weeder

Wood Chip Mulch

- can get excellent weed control
- increased fruit size & tree growth

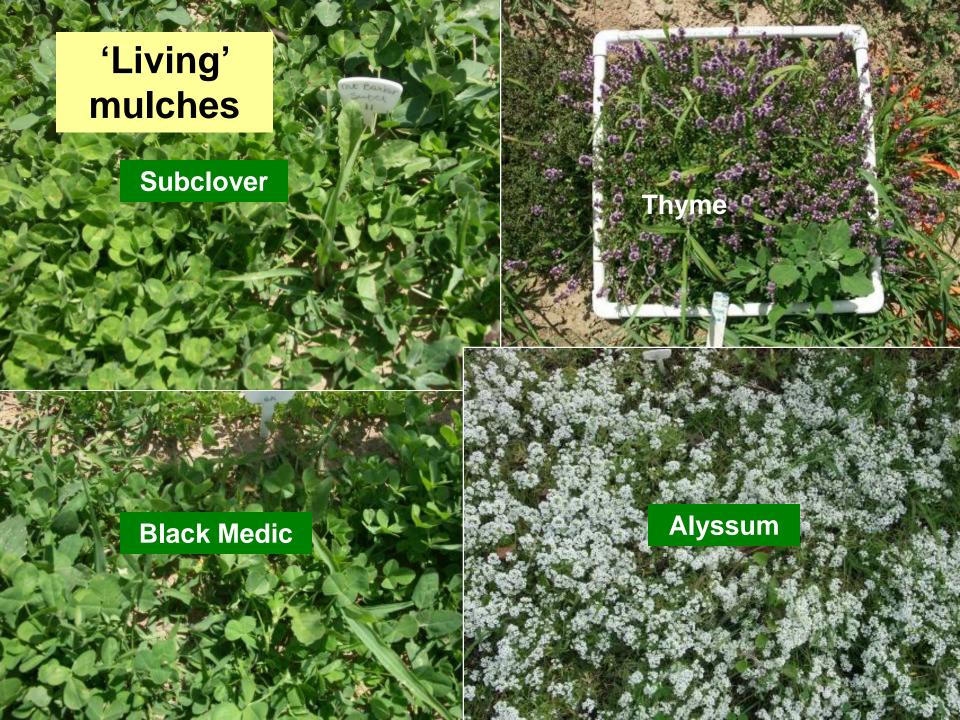




WASHINGTON STATE UNIVERSITY World Class. Face to Face.

Spray-on Paper Mulch

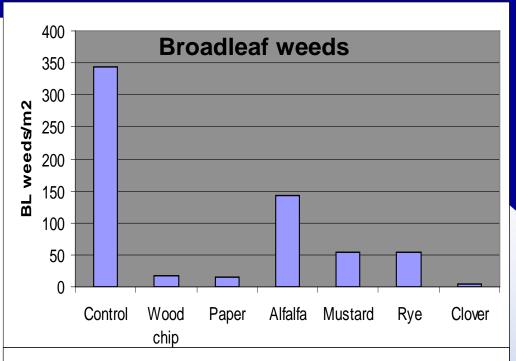
Cost and longevity are key issues.


Sweet woodruff

Thyme

Rodents - the weak link for clover.

Results from Non-Chemical Weed Control Trials



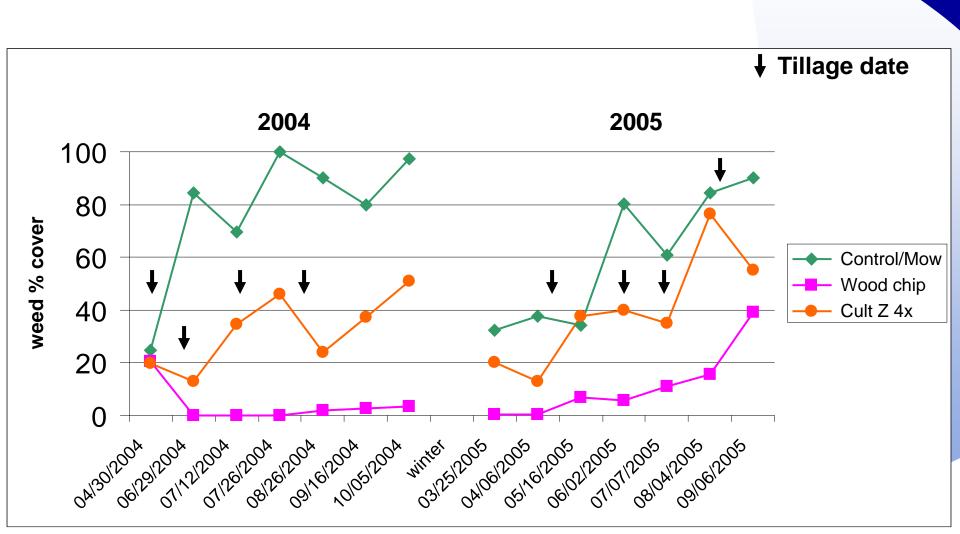
WVC Mulch Trial

Weed Control – 6/1/2000

8-yr 'Red Delicious'/M.26 Wenatchee, WA

Tillage Comparison Trial, 2004-2006

- Control (mow), wood chip mulch, Weed Badger,
 Wonder Weeder at tillage frequencies (2x, 3x, 4x)
- Wood chip layer 15 cm thick



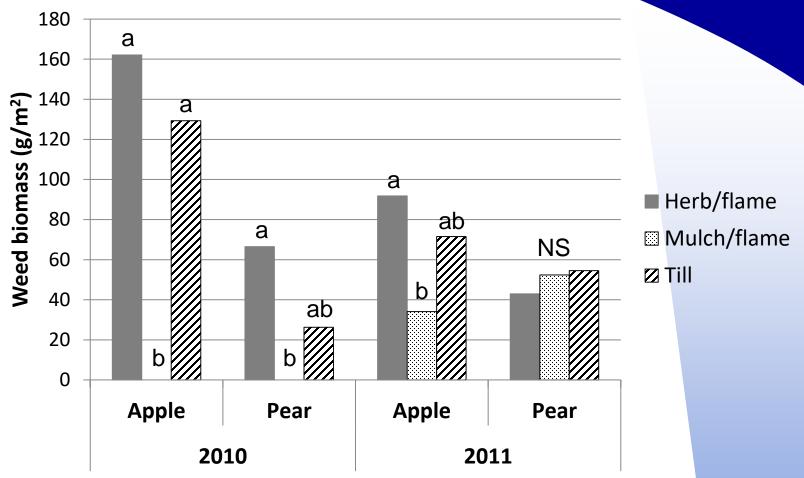
Tillage Comparison Trial

'Gala'/M.26, E. Wenatchee, WA



Tillage Trial

2004-2006


TRT	2005			2006				
	Fruit yield	Fruit Size 80-88	Gross Fruit Value	Fruit Yield	Fruit Size 80-88	Gross Fruit Value	TCSA increase	Canopy volume
	lb/tree	%	\$/ac	lb/tree	%	\$/ac	cm ²	m³ /5 trees
Wood chip	49.3	15.5 a	14,354	32.3	39.0	11,032	3.7 a	56.7 a
Control mow	44.9	6.6 b	12,003	31.5	33.5	9,748	3.0 b	47.6 ab
Cultivator Z 3x	38.7	7.0 b	9,556	29.3	22.0	10,162	2.3 с	39.2 b
p=	0.150	0.014		0.805	0.076		0.001	0.008

UC Davis Trial – Pears, Sacramento Delta % Control of Weeds

Weed Biomass

Weed biomass (dry matter) in the tree row. Columns with the same letter are not significantly different (p<0.05) for that orchard.

Sunrise Fabric Trial

- 2010-2012
- 6 yr old 'Gala'/M.9

	3 Yr Increase TCSA	3 Yr Fruit Yield	Fruit size 2011*	Yield Eff.
	(%)	(kg/tree)	(g)	(kg/cm ²)
Black	113	39.6	211	1.79
White- on-black	129	47.1	219	2.16
p=	0.13	0.08	0.05	0.005

Makus 2007. White-on-black provided excellent weed control and raised anti-oxidant levels in blackberry.

^{*}no fruit size difference in 2010, 2012

Economics

Alternative Weed Control Costs

British Columbia, 2002

Method	Rate	Freq.	Relative Cost \$/ac/y	
	(ac)			
Glyphos.	0.5 I	4/yr	1.0*	
Weed fabric	5' x 3750'	1/6 yr	3.2	
Alfalfa hay	8.5 ton	1/2 yr	3.9	
Wood chip	100 yd ³	1/3 yr	3.4	
Spray on	3.4 ton	1/1.5 yr	4.3	
Flaming	48 lb	3/yr	1.2	
Tillage (Wonder Weeder™)		3/yr	0.5-0.6	

^{*}Actual cost \$104/ac in 2002 dollars

UC Davis Trial – Pears, Sacramento Delta <u>Economics</u> Total Costs/Acre/Year

Weed Fabric in Sweet Cherry

OSU, Hood River, OR – 2001-2007

- Fabric groundcover vs. bare ground in tree row (herb.)
- 2001-2004 fabric \$2125/acre increased costs
- 2004 fabric trt. gross returns \$3240/ac more than bare ground (1st yr of production)
- 2005 \$1633/ac more with fabric
- Fabric trees produced more fruit at an earlier age, maintained higher yields

Weed Control Costs

2011 Dollars

TRT	\$/ac/trip	Trips/yr	\$/ac/yr
Tillage	21.23	5	106
Herbicide	124.60	4	498
Flaming	20.64	5	113
Mulch*	1,202.00	1	
Mulch over	3 yr		401
Mulch over a flaming	3 yr plus		514

^{*} Wood chip mulch applied to tree row, 3' wide, 4" thick

Grower Returns

8+ yr 'Gala'/M.26, sandy soil

į	2009	2010	2011	3-Yr Rel to Till
		Apple - I	Returns* (\$/	ac)
Mulch	2,320	8,440	12,764	+4,777
Herb/flame	1,971	6,193	9,638	-946
Tillage	2,942	6,843	8,963	0

Mature Anjou pears, good soil

	2009	2010	2011	3-Yr Rel to Till
		Pear - R	Returns* (\$/a	ac)
Mulch	9,580	12,636	9,377	+1,432
Herb/flame	10,274	10,621	8,141	-1,125
Tillage	10,676	11,182	8,302	0

^{*}Gross bin returns minus weed control costs and picking costs

Future Options?

http://www.unibots.com/Agricultural_ Robot_Designs.htm

> http://articles.extension.org/pages/74528/ abrasive-weeding:-a-new-tool-for-weedmanagement-in-organic-agriculture

Going Forward

- Year-round bare ground probably not optimal (soil structure and biology, nutrient scavenging)
- Many herbicide options for weed control resistance mgt.
- Mulches have other system benefits; may need supplemental weed control; mow & blow
- Living mulches too competitive, rodent habitat; ways to manage around? habitat benefits?

Orchard Floor Management

http://tfrec.cahnrs.wsu.edu/organicag/ tree-fruit/orchard-floor-management/

Acknowledgements: K. Mullinix, A. Kukes, G. Hogue, P. Andrews, A. Groff, E. Kirby, WA TFRC, BIOAg, SCBG

