

Why Can't I Grow Strawberries Anymore?

Results of Eastern NY Strawberry Survey

Eastern NY Fruit and Veg Conference

February 20, 2018

Laura McDermott – ENYCHP Small Fruit Specialist

Cornell Cooperative Extension | Eastern NY Commercial Horticulture Program

What is the "12 year effect"?

- Winter damage
- Poor vigor
- Poor nutrition
- Poor site selection
- Poor pest management

Root problems are caused by:

- Disease
- •Nematodes
- Insects
- Cultural problems

Diseases caused by fungi

- Verticillium
- Black Root Rot (fusarium, Pythium, Rhizoctonia)
- Red Stele (Phytophthora)
- Anthracnose not actually a root disease

Diseases

• Verticillium Wilt

- resembles drought stress
- occurs primarily in 1st year
- interveinal and marginal leaf necrosis
- inner leaves retain green color plants wilt under stress
- randomn distribution in field

Black Root Rot – Rhizoctonia, Pythium spp., Fusarium

- •Fine feeder roots dry up
- Dark lesions develop and the outside of root turns black
- Interior root core eventually turns brown
- •Severely infected plants collapse
- Partially infected plants wilt during drought, or while plant is fruiting or rapidly growing

Red Stele – Phytophthora fragaria

- Infected plants are stunted
- New leaves are bluish-green and wilty
- Roots rot from tip to crown
- Lateral roots disintegrate resulting in the "rat-tail" taproot
- Interior core or "stele" appears red surrounded by healthy white cortex tissue

Phytphthora at crown level – 'Wendy'

Anthracnose - Colletotrichum fragariae, C. acutatum, C. gloeosporioides

- may cause daughter plants to die
- outer leaves die prematurely
- the plant may collapse from Cr

Strawberry Viruses

Strawberry Mild Yellow Edge VirusStrawberry Vein Banding VirusStrawberry Mottle Virus

Nematodes

Symptoms

Reduced growth Yellow foliage Excessive wilting Reduced yields

May predispose plant to invasion of soil fungi such as *Fusarium*, *Pythium*, *Rhizoctonia*, *Verticillium*

Stubby-root nematodes Root-knot nematodes Lesion nematodes

Cornell Cooperative Extension Eastern NY Commercial Horticulture Program

Insects – White Grub Complex

- June Beetles, Japanese Beetles and Chafers
- Adults nocturnal
- larvae are C-shaped, with six legs
- Stunted growth and plant dieback
- First year plantings most susceptible

Strawberry Rootworm

- Adults are nocturnal and shy
- Larvae are white and can be found in soil root feeders
- Adults do the foliar feeding damage resulting in **distinctive**, ragged appearance

Root weevils – strawberry and black vine

- Light colored, C-shaped larvae found in soil around the plant or imbedded in the crown larvae are legless.
- Adults beetles have characteristic weevil snout
- Adults feed on strawberry leaves causing **characteristic c-shaped notches** on the leaf edge
- Foliar feeding is not the problem larvae feeding on roots

Winter Injury

Brown flecking highlighted by creamy tissuePoor crown regrowth

No signs of nematode issuesCan occur at 10 degree F

Fertilizer injury

- •Nitrate alone causes poor root growth
- •Ammonium fertilizer alone is fine, but may be easily lost
- •A mixture of two is best

Herbicide Injury

•Symptoms vary with material •Most herbicides, if misapplied, will result in poor plant vigor, and poor root growth

Results of Eastern NY Strawberry Survey

Cornell Cooperative Extension | Eastern NY Commercial Horticulture Program

Strawberry Root Weevil Presence

57 Farms Sampled

Presence in Clinton, Essex, Ulster, Columbia

Only 2 farms with major infestation – 3 other farms with presence noted

Other Insects

- White grubs
- Strawberry rootworm
- Sap Beetle

Black Root Rot

Caused by several fungi we sampled for during our survey: *Rhizoctonia spp., Pythium spp., & Fusarium spp.*

- •Fine feeder roots dry up
- •Dark lesions develop and the outside of root turns black
- Interior root core eventually turns brown
- •Severely infected plants collapse
- •Partially infected plants wilt during drought, or while plant is fruiting or rapidly growing

Fusarium Presence in Strawberries

Presence found on 10 farms

Fusarium Crown Rot: Washington & Dutchess County

Fusarium sp: Schoharie, Ulster, Columbia, Greene, Schoharie, Schenectady

https://www.easymapmaker.com/map/d4e351ef38d17db7b4932c226510feb2

Cornell Cooperative Extension | Eastern NY Commercial Horticulture Program

New York

95

Long Island

87

Sarato

Albany

Spring

ERMON

Green

Mountain and Finger

Lakes..

New Haven

89

MASSAC

Springfield

Hartford B4

Worce

Nai

416

81

Watertown

81

Syracuse

NEW YORK

81

Scranton

Allentown

Ithaca

Kingstor

elleville

ester

rince Edward

416

Cornwall

401

Rhizoctonia

Presence found on 10 farms

Saratoga Schenectady Rensselaer Washington

Cornell Cooperative Extension | Eastern NY Commercial Horticulture Program

Misc. Disease

- Pythium
- Mycosphaerella
- Pestalotiopsis
- Botrytis

Verticillium

2 farms tested had confirmation of infestation.

http://www.omafra.gov.on.ca/IPM/english/strawbe http://ucanr.edu/blogs/blogcore/postdetail. rries/diseases-and-disorders/verticillium-wilt.html cfm?postnum=10993

Soil Testing Results

Measured Soil Textural Class: fine

Sand: --% - Silt: --% - Clay: --%

Group	Indicator	Value	Rating	Constraints
physical	Surface Hardness	146	57	
physical	Subsurface Hardness	189	84	
physical	Aggregate Stability	10.0	9	Aeration, Infiltration, Rooting, Crusting, Sealing, Erosion, Runoff
biological	Organic Matter	2.5	5	Nutrient and Energy Storage, Ion Exchange, C Sequestration, Water Retention
biological	Soil Respiration	0.4	22	
chemical	Soil pH	5.8	42	
chemical	Extractable Phosphorus	5.3	100	
chemical	Extractable Potassium	131.0	100	
chemical	Minor Elements Mg: 121.2 / Fe: 6.4 / Mn: 13.6 / Zn: 0.8		100	

Soil quality ranged from medium to excellent on Cornell Soil Health Tests

Common Issue Included:

- Aggregate stability
- Organic matter
- Soil respiration

Overall Quality Score: 58 / Medium

Fumigation

Anaerobic Soil Disinfestation

ASD 3 weeks/clear

Untreated/clear

9 ton/ac rice bran used in ASD

Cornell Cooperative Extension | Eastern NY Commercial Horticulture Program

With thanks to Jim O'Connell, Anita Minnifield and Cameron Fuhr for surveying work and Annie Mills for data and presentation support.

Funding support from NYFVI.

Questions?

Contact me at:

lgm4@cornell.edu

518-791-5038

