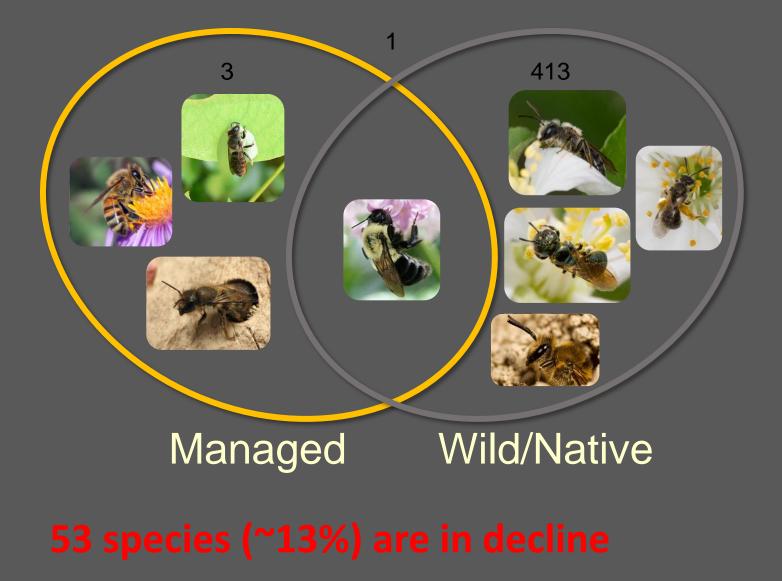
Bee Health, Pesticides & Grower/Beekeeper Communication

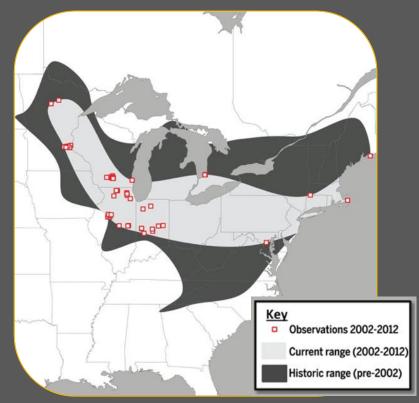
Maria van Dyke

Pollinator Protection Team, Dyce Lab mtv32@cornell.edu


In fulfillment of the NYS Pollinator Protection Plan

Cornell University College of Agriculture and Life Sciences

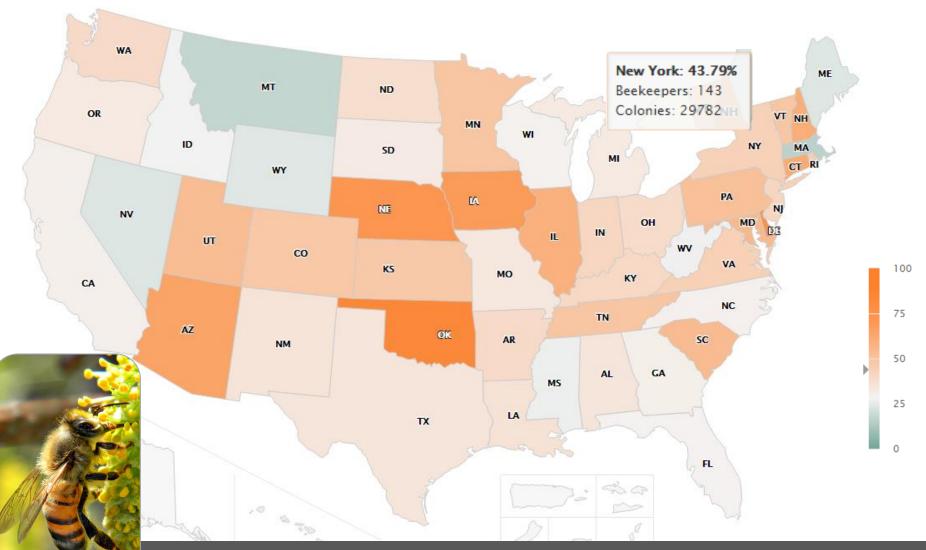
Bees of New York

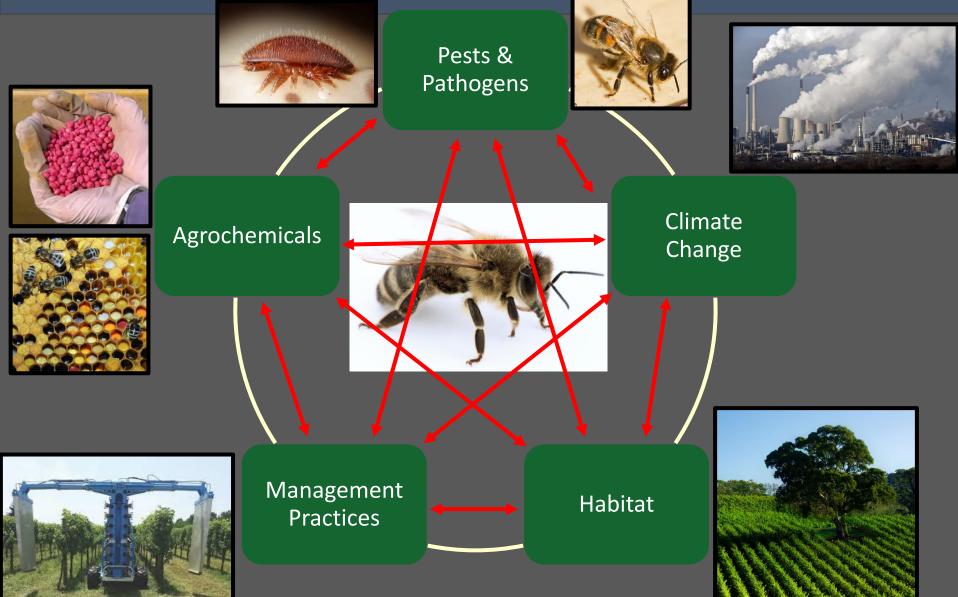

Both wild native bees and honey bees are crucial to agricultural production

Wild bee 📃 Honey bee

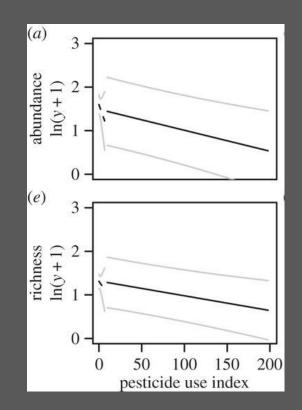
Lewis & Smith 1969, Russo et al 2017, Petersen et al 2013, O'Neill et al, 20??, Winfree et al 2008.

Wild Bee Decline: Range contractions and extinctions of native bees


Goulson et al. 2015. Science

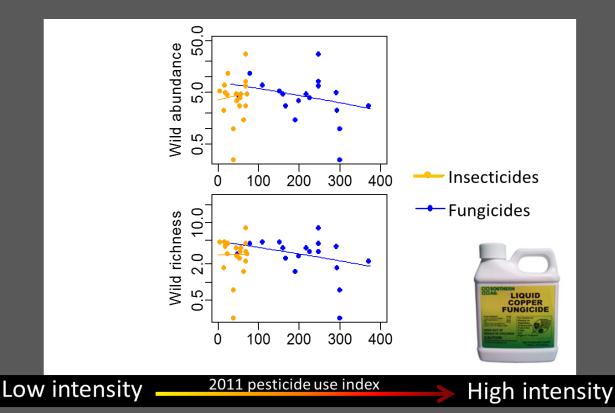

Bombus affinis The rusty patched bumble bee

Honey bee colony deaths were 44% in New York last year


http://beeinformed.org/results/colony-loss-2014-2015-preliminary-results/

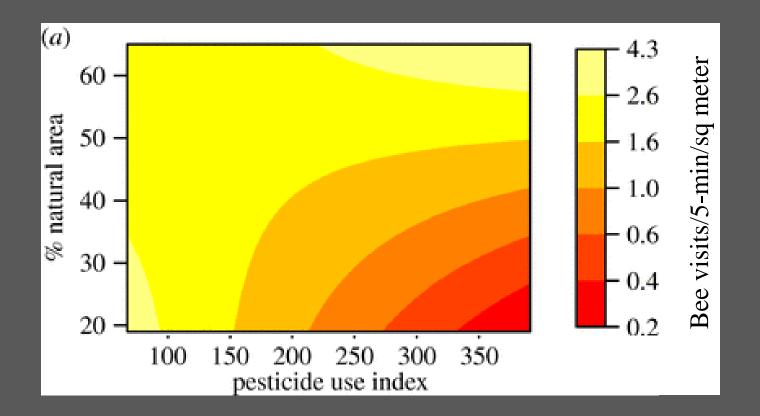
Interacting factors contribute to poor pollinator health

Pesticide effects (Insecticides & Fungicides)


1) Pesticides negatively affect honey bee, wild bumble bee & solitary bee health, abundance, and diversity

Pesticide effects (Insecticides & Fungicides)

1) Pesticides negatively affect **honey bee**, **wild bumble bee** & **solitary bee health**, abundance, and diversity


2) Fungicides are impacting bees as much as insecticides

Park et al 2015, McArt et al, 2017, Connelly et al, 2015 also see: Martins et al, 2015, Ricketts et al, 2008

Landscape can buffer the negative effects

Bee abundance and diversity increase with diverse natural habitat.

Park et al 2015, McArt et al, 2017, Connelly *et al*, 2015 also see: Martins *et al*, 2015, Ricketts *et al*, 2008

Fungicide Effects

Direct and indirect harmful effects on bees.

- disrupt adult bee foraging behavior
- affect larval bee development (babies).

Critical Interactions

- Exposure to some fungicides (DMI) can greatly increase toxicity of insecticides (*neonics, pyrethroids, pyrethrins*)
- Exposure to fungicides **reduces resistance to diseases**
- A poor diet can exacerbate the ability of bees to cope with both toxins and pathogens

Pesticides to be aware of

Pesticides are more mobile than previously thought.

• uptake of systemic/persistent residues by weeds in field margins and cover crops.

Currently known mobile chemicals

- Boscalid (Pageant Intrinsic)
- Dimethoate
- Pyrimethanil (Scala SC)
- Tryfloxystrobin
- Neonicotinoids

Negative bee interactions

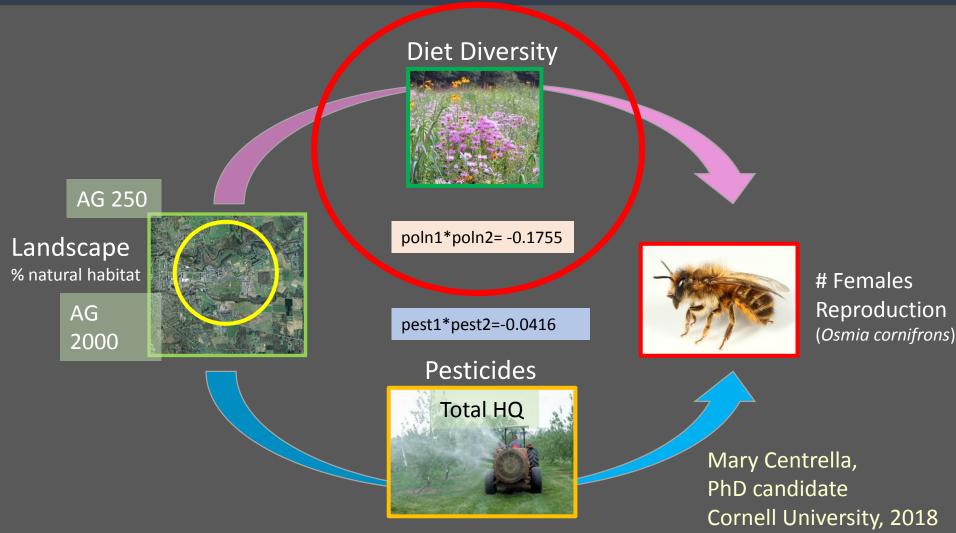
- Tryfloxystrobin
- Pyroclostrobin
- Cyprodinil
- Propocanozole
- Neonics + Pathogens

Synergistic effects on bees

- Piperonyl butoxide + Fungicides
- Neonics + EBI Fungicides
- Pyrethroids + EBI Fungicides

Apple's most toxic pesticides: pollen & wax

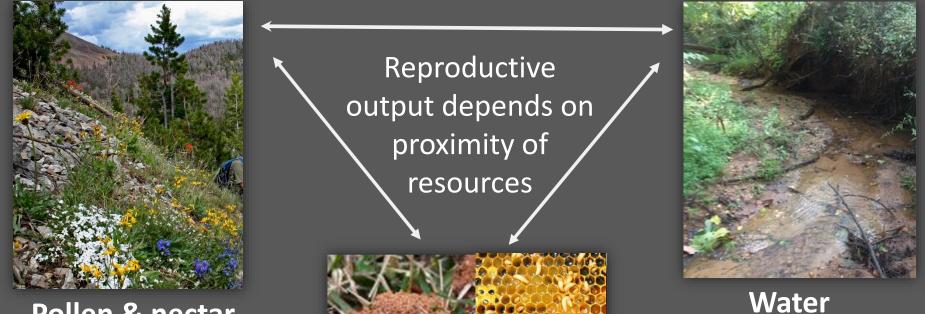
Chemical	Product Name(s)	Type of	Toxicity	Persist-	Residue
		Pesticide	LD50	ance	(ppb)
Thiamethoxam	Actara, Cruiser, Durivo, Platinum,	Neonic	н	Mod	21.5
	Voliam				
Cyfluthrin	Leverage, Defcon, Aztec, Tombstone,	Pyrethroid	н	Mod	93.3
	Baythroid				
Chlorpyrifos	Lorsban, Cobalt, Hatchet	Organoph.	н	Mod-H	143
Indoxacarb	Avaunt	Oxadiazine	н	?	557.1
Methidathion	Sumonic, Supracide, Somonil	Organoph.	н	Low	400
Imidacloprid	Macho, Admire, Couraze, Brig.	Neonic	н	High	6.6
Carbaryl	Sevin	Carbamate	н	Low	69.9
Acetamiprid	Assail	Neonic	Μ	Mod-H	160.5
Piperonyl butoxide	Pyronyl Crop Spray	Synergist	н	Low-M	.16
Cyprodinil	InspireSuper, Vanguard	AP	L*	Mod	1216.4
Iprodione	Rovral 4	Dicarb	L	Low	929.3
Pyraclostrobin	Insignia,Headline,Cabrio,Pristine	Qol	L*	High	1.63
Fluxapyroxad	Priaxor	SDHI	L	High	353.6
Difenoconazole	Aprovia Top, Inspire Super,	EBI	L*	High	327.1
	QuadrisTop, RevusTop				
Propiconazole	Bumper, Quilt, Propimax EG	EBI	L*	High	1.54
Trifloxystrobin	Flint, Gem, Luna, Sensation	Qol	L*	Mod	14.1
Myclobutanil	Rally 40 SWP	EBI	L*	High	49.5


Precautions published by the California Almond Board

How to Reduce Bee Poisoning from Pesticides

at

http://www.almonds.com/pollination


Negative effects of pesticides can be buffered by increased diet breadth and/or diverse natural habitat

Good habitat increases bee abundance and diversity

Enhancement	Increases Abundance?	Increases Diversity?	Reference
Hedgerows	Yes	Yes	Hannon and Sisk. 2009. Biological Conservation 142: 2140-2154. Morandin and Kremen. 2013. Ecological Applications 23: 829-839.
Wildflower strips	Yes	Yes	Haaland et al. 2011. Insect Conservation and Diversity, 4: 60-80 Nicholls and Altieri. 2013. Agronomy for Sustainable Development 33(2): 257-274 Tschumi et al. 2014. IOBC-WPRS Bulletin Vol.100: 131-135 Klein et al. 2012. Journal of Applied Ecology, 49: 723- 732.
Adjacent fields	Yes	Yes	Steffan-Dewenter. 2003. Conservation Biology, 17: 1036-1044 Kremen et al. 2004. Ecology Letters, 7:1109-1119 Williams and Kremen. 2007. Ecological Applications, 17: 910–921
Field margins	Yes	Yes	Morandin and Kremen. 2013. Ecological Applications 23: 829-839.

GOOD HABITAT Proximity of resources

Pollen & nectar

Nests

GOOD HABITAT Plant a diversity of species with at least 3 species flowering at any given time (Spring, Summer, Fall)

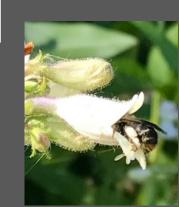
Honey Bees

Bumble Bees

Digger Bees

Blue Mason Bees

Leaf-cutting Bees


Squash Bees

January February March May July June July Septembe Septembe

November December

Native plants that honey bees and wild bees use for nectar or pollen.

Attractive Native Plants

	Native Bee	Honey Bee		Native Bee	Honey Bee
Agastache nepetoides	97	8	Ratibida pinnata	58	2
Amorpha canescens	13	0	Rosa wild	6	6
Aster laevis	16	2	Scrophularia marilandica	32	3
Aster novae-angliae	23	12	Silphium perfoliatum	272	10
Arnoglossum atriplicifolia	48	2	Spiraea alba	50	19
Cephalanthus occidentalis	6	0	Vernonia sp	32	9
Eupatorium perfoliatum	33	22	Allium sp	24	<i>106</i>
Helianthus strumosis	19	0	Apocynum cannabinum	10	10
Heuchera americana	6	0	Asclepias incarnatum	34	197
Liatris aspera	58	0	Solidago -Goldenrod	<i>90</i>	178
Lobelia siphilitica	186	1	Veronicastrum virginicum	72	140
Monarda punctata	12	23	Verbena stricta	8	18
Penstemon hirsutus	7	0			
Potentilla	41	1			

Tuell et al, 2008

GOOD HABITAT Plant each species in large clumps at least 3-5 sq ft

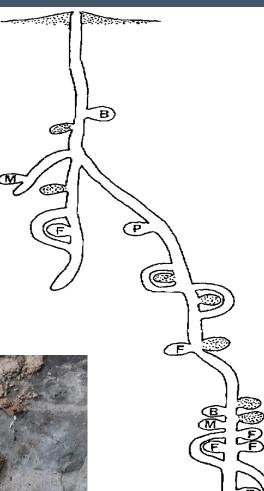
THINK LIKE A BEE: An abundance of flowers is more attractive than just a few individuals.

Demonstration Garden showing GREAT habitat

stems

open ground

floral diversity


successional blooms

cavities

GOOD HABITAT Provide access to safe nesting sites

- 1. Leave dead wood and hollow stems
- 2. Create access to bare ground/water
- 3. Honeybee hives away from pesticides*
- 4. Protect larval provisions and bee
 - Mold
 - Bacteria
 - Disturbance

Pesticide Management

Growers & Homeowners should follow IPM & IDM

- Scouting early and often
- Remove infected plant materials
- Use disease risk models
- Spray between late afternoon and very early morning
- Select fungicides that do not synergize with neonicotinoids or pyrethroids (non EBI/DMI fungicides)
- Use shorter-lived neonicotinoids like imidacloprid and/or thiacloprid, in a targeted manner

Creating or sustaining natural habitat floral diversity within 250 m of orchard

Pesticide Management : Communicate with beekeepers

- Grower/Homeowner should communicate with beekeeper when intending to spray
- Beekeeper lets growers/homeowner know when they put their hives nearby (1-2 miles radius).
- Beekeeper educates grower/homeowner
- Grower educates beekeeper

Marketing your grower-beekeeper relationships...

Marketing & Habitat Management

Tall Ragweed

Blackberry

Elderberry

Questions?

mud partition

egg pollen/nectar

Email your questions to mtv32@cornell.edu

Cornell**CALS** College of Agriculture and Life Sciences