Pruning Studies to Manage Crop Load in Pennsylvania

Jim Schupp, Becky Wiepz, Melanie Schupp and Edwin Winzeler Penn State Fruit Research and Extension Center

Outline

- Pruning for crop load potential: Getting crop "in the ballpark"
- Tall Spindle pruning severity studies: Gala and Fuji
- Artificial Spur Extinction: spur pruning Gala and Golden Delicious

Crop Load Terms

- Yield: Weight or volume (Bu) fruit / tree or / land unit (acre)
- Crop load: Fruit number per unit of bearing surface
 - trunk or limb size: No. / TCSA; No. / LCSA
 - Crop *density*
 - "Supply-Demand" ratio

Crop Load Mgt Options:

- Pruning: Adjust crop potential
- Blossom thinning
 - Chemical
 - Mechanical
- Post-bloom chemical thinning
 - Rescue chemical thinning at 20 mm
- Hand thinning: Corrective measure when all else fails
- Return bloom sprays

Pruning Goals: Fruit Size and Quality Sunlight and Crop Density

- Pruning reduces yield and increases fruit size & quality
- Space fruiting laterals vertically & radially
- Reduce shading by reducing excess branching
- Reduce crop density to promote higher Leaf : Fruit ratio
- Can we quantify this?

Pruning for Peach Crop Load Goal Quad V orchard

600 bushel / A of large (3") fruit = 60,000 peaches per A 345 trees/A = 174 peaches/ tree 4 scaffolds / tree = 44 peaches/ scaffold At 2 peaches per fruiting lateral = 22 laterals Ballpark: Prune to 22 fruiting laterals / scaffold

Equilifruit Disk

Pruning for Apple Crop Load Goal:

1210 bushel / A of 3" fruit

= 121,000 apples per A
1210 trees/A = 100 apples/ tree
100 apples @ 6 fruits / lcsa = 16.7 cm² lcsa per tree (2.6 in² lcsa)
If limbs are ~1 cm (0.4") in diameter, 22/ tree are needed for a full crop

Estimated Limb No. for Target Yield / A 1210 Trees / A (3' x 12' spacing)

Yield Goal (Bu / A)	Fruit no. / tree	Limb csa / tree	Limbs / tree (est)
1000	83	14	18
1210	100	17	22
1500	124	21	27
1800	149	25	32

The Numbers?

- Need <u>measurable</u> benchmark
- 1. To develop robotic pruning
 - What limbs to cut?
 - Threshold (when to stop?)
 - What & how much data needed?
- 2. To evaluate: how did we do?
- 3. Need for manual pruning too

Tall Spindle

- World standard
- Productive, quality
- Common canopy features
- Minimal branching
- One simple target

Severity: Limb - Trunk Ratio

- Measure diameter of each limb on 4 trees
- Measure the trunk diameter at 12 inches
- Calculate sum [LCSA] and TCSA.
- Choose desired LT ratio.
- Prune largest successive limbs to desired LT ratio.

Pruning Severity: Gala/ M.9

Gala Yield per Tree

Gala Fruit Size

Gala Fruit Size Distribution

Max remaining limb diameter after pruning

Severity: Max Limb Diameter

- Measure sum[LCSA] / tree and TCSA on ~4 representative trees
- Establish target severity (LT ratio)
- Regression to establish max remaining limb diameter (MD)
- *MD* (2013) = -0.87 +0.553 TC + 4.29 LT
- Then need only measure TC to determine the maximum allowable branch diameter from LT ratio data. Cut off all larger limbs.

MD: Maximum Allowable Branch Diameter

Fuji Pruning Severity Trial

UNPRUNED

PRUNED TO 1.25 LT RATIO

Maximum remaining limb diameter after pruning, 4 year average

Fuji Fruit Size, 5 Year Average

Fuji Crop Value

Alternate bearing index

MD Method:

- Scan LCSA and TCSA in 4 trees / block
- Set desired severity level (LT)
 - 1.25 produced best yield / large fruit for Gala
- Calculate threshold diameter for largest remaining branch (MD)
 - 12.5 mm = ½ inch
- Prune off everything larger!

On-going Studies: MD Method for Pruning Severity

- LT ratio will change with tree age
 - After full canopy is achieved, does target LCSA become static?
 - TCSA will continue to increase
 - If so: calculate target LCSA per acre
 - Measure trunk of each tree to determine that tree's share of LCSA.

MD Method

- Goal can be adjusted
 - Mgt. goals
 - Site capability
 - Cultivar, etc.

 Simple severity rule for engineers to design automated pruning

Pruning Rule Orders

- 1. Remove all >MD limbs with renewal cut
- 2. Remove all pendant / upright limbs
- 3. Thin out horizontal limbs to 8 per m
- 4. Prune each remaining limb to a single axis

Experimental Pocket Guide

Summary: Size Matters • Goal: to do 70% pruning = 90% benefit

• We can reach this goal with one rule

Artificial Spur Extinction (ASE)

- Early season decrease in potential crop load
 - Branch level manipulation
 - Used widely in New Zealand and Australia
 - Followed with hand thinning
 - 1. Early in the season excess fruiting buds (spurs) are removed
 - Around tight cluster or green tip
 - Standard: 6 buds per cm² limb cross sectional area (lcsa)
 - 2. All lateral buds stripped from one year old wood

2-GREEN TIP

3-HALF-INCH GREEN 4-TIGHT CLUSTE

Previous Research on ASE

- Designed to mimic reproductive strategies of type IV apple trees
 - Developed in France
- Currently widely practiced in New Zealand and Australia
 - Examined impacts on multiple varieties
 - Preventing early bearing
 - Decreasing bienniality
 - Fruit quality and storability
 - Follow up hand thinning

PA Research on ASE

Pennsylvania: focused on implementation methods

- Traditional ASE using the Equili-fruit disc
- Estimated ASE
- ASE in combination with pruning to 6 limbs/m canopy
 - New Zealand
- Mechanical ASE using string thinner

Kon, T.M.

Golden Delicious: Yield

Golden Delicious: Fruit Size

Golden Delicious: Conclusions and next steps

- No discernible trend
 - Fruit size and yield weren't improved reliably by any treatment
- Standard (6 buds/cm² lcsa) is not low enough for Pennsylvania climates
- Determine if a level of spur extinction can produce ideal fruit size and quality in Pennsylvania Orchards
 - Achieving ideal crop load
 - Maximizing crop value
 - 'Gala'

Artificial Spur Extinction: Intensity

- Mature 'Crimson Gala' apple trees
 - Trained to tall spindle
- Thinned in mid march
 - At or before green tip
 - 5 treatment groups
 - ASE2, ASE4, ASE6
 - Control A (removed laterals), Control B (intact laterals)

(4 trees per treatment) Two seasons of data

Environmental Variability

Hail event in 2018

- Petal fall
- Physical damage caused low fruit set

Yield Distribution:

Crop Value

ASE Conclusions

• Current results

- Not as promising as in the southern hemisphere
 - Lack of follow-up thinning?
 - Climate Differences
- Risk associated with early thinning
- Not recommended for Mid-Atlantic growers

Thank you

- State Horticultural Association of Pennsylvania
- Penn State FREC

